Grammar-oriented Object Design to Seamlessly Map Business Models to

Component -based Software Architectures,
Decorator for logging
[image: image1.png]Expression

woresso

Decorator

+check() -

—

N
- expression.check()

Ay
Log
- logFile : File
LoggingDecorator | -instance : Log.
+ Instance()
beforelnvoke() ~+ check() + store()
gﬂe::nixieﬁhecm | + beforelnvoke() + load()
+ afterlnvoke()

Figure12: Tsing Decorator Tor Logging

Observer for logging

[image: image2.png]Expression cheoers Observer
+ notifyBefore()
+ aitach(Observer) + notityatter()
+ detech(Observer)
+notifyBefore()
*notifyafer()|

for all o in observers { L Logger Log
- instance : Logger - logFile : File
* Instance() | -instance : Log
+ notifyBefore() + Instance()
+ notifyAfter() + store()
+load()

re1: UsingDbserverTor Logging

[image: image3.png]Simple Rule Object: Static View

iRuOsEcr

neckRe()
Resuls()

[Rsstorproperies ebues ae N
passad into the RusOniect The
|Assassoris gven e ProperyListto
|evaisate. s okay. e RO then
irvokes the apsroprite Acion obct

Properies

Rusonet

ey

[k <Derautimol=> cheokRus(Propertes p) - Resul

[<sssessor>> bookesn svsiust(Praperies)

i

[BB <Comman>> execusProparies) et

Dupicatecheckie ContmbamionRus

Resr

ethctonResats()
elhssessorResuis()

Figure 9: Static View of Rule Object and its Collaborators

Compound Rule Object: Static View

The Rule Cluster holds a cluster of Composite Rules; each with their its potential Composite Conditions

and Actions. A Simple Rule is a leaf node of the composite and can exist by itself to handle (for example)

UI field editing and validation.[image: image4.png]Figure 10: Static View of Compound Rule Object and its Composite Hierarchy

[image: image5.png]Here is an alternative view of the above diagram. The concentration is on the dynamically pluggable nature
of the Rule Object and its constituent parts rather than on its Composite nature as depicted above.

Figure 11: Alternative View of Compound Rule Object

Client

<<Composite>>
AbstractRuleObject

<<Composite>> <<Composite>>
AbstractAction AbstractAssessor

MBexecute() [Ievaluate()

updatesstate> €aUaLES> \

ogs> fogs>

PropertyList

ActionResult AssessmentResult

AbstractResult

Collaborations

Here is a set of sample collaborations:

Set up rules (eg. cache in a
hashtable: “cache and hash™)

Submit candidate state (pass in
property or hashtable or just
parameters for state you want to
check consistency of)

Check conditions on submitted state
using Assessor(s) . An Assessor will
usually go through the list or
hashtable and check each condition,
or have a Strategy that will check
each condition using an algorithm
that in the simplest default case is
round robin, but you can choose or
define your own optimized Assessor

[image: image6.png]The following sequence diagram depicts the Set up Rules step above:

DebrisRemoval Debris DebrisRemoval Debris

initalizeRules()

new)
new)
new() [;
addAssessor()
addAction)
addProperties()

‘addAsessorActionRelation()

addRule(newDebRemRule)

1)

Figure 12: Setting Up Rules

[image: image7.png]Service Provider: A Domain Pattern and its Business Framework Implementation

—Cusier
RuleCluster - -
Figure 8: Rule Object
| Sub-pattern
<<mettace~
RuleModel
|
<<Avstract->
AvstraciRule —‘., o
Absiract
<<Avstract>~
I CompoundRule
- 1 -
vall I |<<Abstract>>[1.." 1.* [<<Abstract>
Contion W Acion o ‘
SimpleCondition CompoundCondition || SimpleAction _CompoundAction

Note: The application of a set of rules, may be optimized according to various Strategies. The
CompoundRule has a Strategy for optimization of going through rules, assessing conditions according to
the Assessor pattern and choosing the appropriate Action(s).

[image: image8.png]Figure 4 An Example
of Customizing a
simplified Service

Provider

ratstace

[Composte BL SubseriptionRule | [MemebershipRule

Caurse

oursesection
ourseTitle
fycoursedescriion

CourseOferng

s
&

Student

SoftwareEngineeringBachelorsDegree

Duration Price
LocationofCiess | [Semester | [slock

TrainingGenter or Universiy

LocalTrainingCenter

[image: image9.png]The following figure shows a class diagram that demonstrates the interfaces and classes that participate in
the Service Provider pattern:

[Ailintermal services.
for naming, trading,
transacion,
ecurity,

5

eintertace=> ruleModel ~<Cluster==
CanonicalObject RuleMoge!
o] <Abstrac> Fortal

Businessagreement

relationship, etc.

‘ -

SubscriptionRule

MembershipRue

rwom:‘lja -

-

r
CsPcore

<<abstrac>

SPRole

[

v | seiceottenngs 14| <eAbstac> ~interace
GenercSenvice Sericeoterng | Customericcount
B = I
K~) Susiness Transaction
e r
PackagedService <<interface>> LocationDependentService ConcreteCustomerAccount
Product
CuransedsenieeOeng
7y | e

Groupedservie | | [[conrsteproduct Gateway ALErmeAyenenl -1 | S
~Hbsirac>
InternalService Servee

<<Abstract>> ConcreteLocation

[} 4 Location

ookl Sesven) ConcreteService.
Hbatrac~

[Services cluster . ServiceProvider Il business rules and|
Oreing custer deal” constaints go
Location cluster nere
ToA custer
service Provider custer
Customer Account clster CompositeserviceProvider | [LosationDependentServiceProvider
Rules custer

Figure 7: Structure
of Service Provider

SenviceDeveioper | [ServiceComposer

ServiceConnecior

[image: image10.png]a)Service Offering Cluster Typical Scenario

1hs organization | Senvice ServiceOffering. ‘ServiceProvier|
asanadmin
Construct
' ' '
> adaservice
1

addOffering

Conshruct
1

setupSubscriptionRuleModel

[— S

[image: image11.png]b) Reporting/ Request Typical Scenario

admin ‘ServiceProvider ‘Genericservice | [ServiceOtrering | [Customer

| oetProvidedsenvices |

U

setect Coursex in ¥ uhiversity

frering

getOffering(*Coursex in Y uversity")

view subscriBers of that offering
getServicesubschvers

generateReport 1 getToA() for all dustomers

[image: image12.png]¢) Rule Model Cluster Typical Scenario (instance is University Registration)

1 (estzoseruoe)

P

cannegster
(usernesenve

3 ‘S SR oy | gy I gy = Errmy
ey ey ey ey
I | }
ceecservees | | |
| |
womt T regsterarsenice |
|

p—

wicsepamen

[image: image13.png]Collaborations

The following is a typical scenario of usage between the Service User and Service Provider. Noe : This ha
been chosen as a representative collaboration related to a simple scenario from among many generic
collaborations. Here are some representative collaborations for some of the main clusters.

Service Provider Toa Payment

3

M AddCustomerfecount

view proposed TOA. E.

fill in needed TOAinformation T

select a service offering | D

5 constructATemporary TOA. pomirrrs
: checkRules :
1 <
il payment info ; checkRules j
| ERE u : i
submit ! 1
|— == registerServices 1 '

3ssignTOAto Customer-Service ffering

e cave !

e

[image: image14.png]rere are some more typical collaborations based on clusters within Service Frovider ©

)Service Offering Cluster Typical Scenario

e organization | Serdce. ‘Serviceotlering. ‘Serviceprovider
asanadmin
Construct
! ! '
adaservice

E] i

conshruct I

1 i

setupSubscriptionRuleModel

addOffering

[image: image15.png]Service Provider: A Domain Pattern and its Business Framework Implementation

d) Service Provider Location Cluster Typical Scenario

admin | [mainsemice ‘abranch or LocationDependent
Provider ‘ServiceProvider

onstract
I constructand compose

a0ServiceOffedng (location_dspendent_offerings)

‘addSdrviceOfreringofferings)

RN o S

[image: image16.png]<) Business Terms of Agreement Cluster Typical Scenario

3 senice ‘SenviceProvger o Pament
supscriplion UL
| | |
o AddCustomerhccdunt |

select a service offering

[———
view proposed ToA L)

s

il in nesded TOA information 7

il payment info

const

ctATemporary OA consruct

checkRules

checkRules

submit

M reqstersenices

RS

T
i
i
th
T
H
H
H
H
H
H
H
H
H
H

assignTOA to Customer-ServicdOffering

[€— save

Appendix A: Rule Object: A Pattern Language for Adaptive and

Scalable Rule Design and Construction (Management)

The following table summarizes the patterns in this pattern language and provides an initial definition and

context for each one. The next section in this appendix outlines a map of the pattern language showing how

the patterns relate to one another; supplying transition criteria (for going from one pattern to another) and

the forces that will be encountered before the transition and once the transition is made.

Rule Pattern Language Summary

1. Rule Object –

You want to Provide extensibility and adaptability to business processes, without endangering them with

intrusive changes, by making the rules governing them pluggable. Therefore, externalize the rules during

design time. Separate the definition of the rules from the objects that are governed by those rules. Business

objects tend to participate in more than one configuration, collaboration and context. Therefore, avoid

statically binding a business object set to a given context by embedding the rules within it. Separate the

rules governing an object’s behavior from the object itself. Thus, you can re-define and re-configure how

the object should/will behave in new contexts and in the face of new requirements. For example, Define

new products and services based on the set of standard, atomic product and service types without stunting

the growth and resilience of the product definition process; geared to meet and overcome new demands of

clients, marketplace and competition.

2. Assessor – You want to check conditions that tend to vary a great deal. You don’t want to rewrite the

code every time, with a slightly novel twist. New requirements call for new assessment, evaluations,

based on which you take action; to accept an order, to submit a loan to register for a service based on

eligibility. Your conditions can be Boolean expressions or events that are guards in astate transition

diagram. Therefore, separate and reify the conditions from the action parts of a Rule. Assess a set of

conditions based on an input set of Properties (Context); record results of evaluations in a Result.

3. Action – You want to manage the changing set of actions you have to take when a condition has been

checked. It started out to be straightforward; but now there are multiple actions, each with a new twsit;

some are radically different. You want to avoid cluttering your code and want to be able to you’re your

actions in response to events or conditions rapidly. Therefore, separate and reify the action part of a

Rule from its condition part. Perform actions in continuation of the results of the Assessment of

conditions, record results and update Properties (Context; Context is Updated; Context is not Updated)

and State (Rule changes Object State; Rule maintains object State) of pertinent objects in

collaboration.

4. Rule Cluster – Components the Composite definition and application of Rule Objects; optimize rule

application through the definition and selection of a rule application policy.

5. Rules have State – Maintain State between rule checks and applications

6. Rules are Tracked – track history, changes, condition/action set pairs

7. Document Rules as Patterns—capture rules as patterns to track and report reasons for solution of

issues and consequences

8. Rule Object Repository: Centralize Rules in Corporate Repository

9. Rule Access Rights – managers should be able to create rules; give access rights to control unwanted

or accidental corruption of rules

10. Rules Change Process – New rules impact old processes

11. Components Have Manners – clusters of collaborating objects have laws governing their behavior

and meta-data about these rules (laws).

12. Rules as First-class Constructs -- conducting analysis and design based on object “manners”

13. Rules as Production Rules of the Application Domain Grammar – Grammar-oriented object design;

define a domain language and grammar for a domain; implement it using a parser accepting input from

an application running in that domain

14. Persistent Rules—Handle proliferation of subclasses and objects as “data”

15. Hash and Cache—provide efficient and quick access to subclasses and objects as the numbers

increase

© 1999-2001, Ali Arsanjani, IBM – Permission granted to make copies for the PLoP 2001 Conference 27

16. Remedy Rule Proliferation—Handle object proliferation syndrome

17. Rules Evolve – Rule evolution for business survival

18. Rule Change Impacts Architecture – information system architecture, functional and non-functional

requirements are impacted by changes in rules.

19. Rule Engine – The number of rules, their dependencies and potential conflicts are becoming

unmanageable. You have separated out the rules within the same program or you have externalized

them in a Configurable Profile or an External Rule, as an XML file or a EBNF-grammar. But now you

need to handle this additional complexity. Therefore, externalize the rules during run-time .

20. Rule Analysis: Add a phase in your development life-cycle to concentrate on sampling a subset of

business rules that form a representative picking of the population of your business rules across tiers

and business domains. Create a Rule Matrix showing dependencies and start isolating clusters of

dependencies that are cohesively as unit. Provide a solution for each cluster and place each cluster in

its appropriate place within the architecture using Rule Placement.
