An Introduction to

Process Patterns

An AmbySoft Inc. White Paper

Scott W. Ambler

Object-Oriented Consultant

AmbySoft Inc.
Material for this paper has be excerpted from:

Process Patterns: Building Large-Scale Systems Using

Object Technology

Scott W. Ambler

SIGS Books/Cambridge University Press, July 1998

and

More Process Patterns: Delivering Large-Scale Systems

Using Object Technology

Scott W. Ambler

SIGS Books/Cambridge University Press, September 1998

This Version: June 27, 1998

Copyright 1998 Scott W. Ambler

1. WHAT IS A PROCESS PATTERN?..1

2. TYPES OF PROCESS PATTERNS ...2

3. TASK PROCESS PATTERN – TECHNICAL REVIEW.Doc..3

3.1 FORCES...3

3.2 INITIAL CONTEXT..3

3.3 SOLUTION ...3

3.4 RESULTING CONTEXT ...4

4. STAGE PROCESS PATTERN – PROGRAM.Doc..5

4.1 FORCES...5

4.2 INITIAL CONTEXT/ENTRY CONDITIONS..5

4.3 SOLUTION ...6

4.4 RESULTING CONTEXT/EXIT CONDITIONS ...7

5. PHASE PROCESS PATTERNS.Doc...8

5.1 FORCES...8

5.2 INITIAL CONTEXT/ENTRY CONDITIONS..8

5.3 SOLUTION ...8

5.4 RESULTING CONTEXT/EXIT CONDITIONS ...9

6. WHY PROCESS PATTERNS? ..10

7. PROCESS ANTIPATTERNS ...11

8. SUMMARY..11

9. REFERENCES AND RECOMMENDED READING ...12

10. GLOSSARY ...13

11. ABOUT THE AUTHOR...14

12. CHANGE HISTORY OF THIS DOCUMENT..15
Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

Not only do the same type of problems occur across domains, problems whose solutions are addressed by

design patterns and analysis patterns, but the strategies that software professionals employ to solve

problems recur across organizations, strategies that can be described by process patterns. A process

pattern describes a collection of general techniques, actions, and/or tasks for developing object-oriented

software. Process patterns are the reusable building blocks from which your organization will develop a

tailored software process that meets its exact needs.

1. What is a Process Pattern?

To define what a process pattern is, I would first like to explore its two root

words: process and pattern. A process is defined as a series of actions in

which one or more inputs are used to produce one or more outputs. Defining

a pattern is a little more difficult. Alexander (1979) hints at the definition of

a pattern by pointing out that the same broad features keep recurring over

and over again, although in their detailed appearance these broad features

are never the same. Alexander shows that although every building is unique,

each may be created by following a collection of general patterns. In other

words, a pattern is a general solution to a common problem or issue, one

from which a specific solution may be derived.

The repetition of patterns

is quite a different thing

than the repetition of

parts. Indeed, the

different parts will be

unique because the

patterns are the same.

– Christopher

Alexander

Coplien (1995), in his paper “A Generative Development-Process Pattern Language,” hints at the

definition for the term “process pattern” in his statement that “the patterns of activity within an

organization (and hence within its project) are called a process.” For the purposes of this paper, I define a

process pattern to be a collection of general techniques, actions, and/or tasks (activities) for developing

object-oriented software. An important feature of a process pattern is that it describes what you should do

but not the exact details of how you should do something. When applied together in an organized

manner, process patterns can be used to construct software process for your organization. Because process

patterns do not specify how to perform a given task, they can be used reusable building blocks from which

you may tailor a software process that meets the specific needs of your organization.

Related to process patterns are something called organizational patterns, patterns that describe common

management techniques or organizational structures. The fact is that process patterns and organizational

patterns go hand-in-hand, although the focus of this white paper, however, is not organizational patterns.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

2

2. Types of Process Patterns

One feature which I believe is important for process patterns is that it be possible to

develop them for all aspects of development. The point to be made is that the scope

of a single process pattern may range from a high-level view of how applications

are developed to a more-detailed view of a specific portion of the software process.

Patterns can exist

at all scales.

– Christopher

Alexander

I believe that there are three types of process patterns. In order of increasing scale they are:

1. Task process patterns. This type of process pattern depicts the detailed steps to perform a specific

task, such as the Technical Review and Reuse First process patterns

2. Stage process patterns. This type of process pattern depicts the steps, which are often performed

iteratively, of a single project stage. A project stage is a higher-level form of process pattern, one that

is often composed of several task process patterns. A stage process pattern is presented for each

project stage of a software process, such as the Program stage presented in Figure 2, of the Object-

Oriented Software Process (OOSP) of Figure 4.

3. Phase process patterns. This type of process pattern depicts the interactions between the stage

process patterns for a single project phase, such as the Initiate and Delivery phases. A phase process

pattern, the Construct pattern is depicted in Figure 3, is a collection of two or more stage process

patterns. Project phases are performed in a serial manner, this is true of both structured development

and of object development. A common myth within the object industry is that object-oriented (OO)

development is iterative in nature. Although this may be true of the small, pilot projects prevalent in

the early 1990s, it is not true of today’s large-scale, mission-critical applications. The reality is that

OO development is serial in the large, iterative in the small, delivering incremental releases over time

(Ambler, 1998b). Phase process patterns are performed in serial order, made up of stage process

patterns which are performed iteratively.

To date, the vast majority of the work in process patterns has been in what I would consider task process

patterns, and very little work in phase and stage process patterns (although you could easily argue that

some organizational patterns encroach on this territory). In the three following sections I will provide an

example each of a task process pattern, a stage process pattern, and a phase process pattern, all taken from

the OOSP process pattern language (Ambler, 1998b; Ambler 1998c). In Section 6 I present the Object-

Oriented Software Process (OOSP), a life cycle composed of phase and stage process patterns, which in

turn are enhanced by task process patterns. My experience is that when you look at process patterns from

the point of view of defining/tailoring a software process for an organization then you need the three types

of process patterns described in this section to be effective. I believe that task process patterns are a key

component of a software process, but that phase and stage process patterns are needed to organize them

and to put them into a meaningful context for your organization.

4. Task Process Pattern - Technical Review.Doc

5. Stage Process Pattern – Program.Doc
6. Phase Process Pattern.Doc
6. Why Process Patterns?

Process patterns are an excellent mechanism for communicating approaches to software development that

have proven to be effective in practice. Furthermore, process patterns are the reusable building blocks

from which your organization may tailor a mature software process. For example, in Figure 4 we see a

depiction of the Object-Oriented Software Process (OOSP), which is composed of four serial phases that in

turn are composed of iterative stages (Ambler, 1998b; Ambler, 1998c). The “big arrow” at the bottom of

the diagram indicates important tasks critical to the success of a project that are applicable to all stages of

development. The phase and stage process patterns, as well as the “big arrow tasks,” are in turn enhanced

by task process patterns. Process patterns, in the form of the OOSP, have been used to form a mature

software process for the development of large-scale, mission-critical software using object technology.
[image: image1.png]
Figure 4. The Object-Oriented Software Process (OOSP).

As you can see in Figure 4, there are four project phases within the OOSP – Initiate, Construct, Deliver,

and Maintain and Support – each of which is described by a phase process pattern. Also in Figure 4, you

see that there are 14 project stages in the OOSP – Justify, Define and Validate Initial Requirements,

Define Initial Management Documents, Define Infrastructure, Model, Program, Test In The Small,

Generalize, Test In The Large, Rework, Release, Assess, Support, and Identify Defects and Enhancements

– each of which is described by a stage process pattern. Project stages are performed in an iterative

manner within the scope of a single project phase. Project phases, on the other hand, are performed in a

serial manner within the OOSP.

As indicated above, I believe that process patterns are a key enabler for tailoring/defining a mature

software process for your organization. The reality of process improvement, however, is that you cannot

make all of the changes that you want to immediately; it is simply too great a change for your

organization to absorb at once. This is why we have efforts such as the Software Engineering Institute’s

(SEI’s) Capability Maturity Model (CMM) efforts (SEI, 1995) and the Software Process Improvement

Capability Determination (SPICE) efforts (Emam, Drouin, and Melo, 1998) of the International Standards

Organization (ISO). Both of these organizations suggest that you prioritize the process improvements that

your organization needs to make, expect that it will take several years to make the needed changes, and

expect that you will experience difficulties while doing so. Experience shows that organizations that try to

make immediate, large-scale process changes are likely to fail doing so.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

11

7. Process Antipatterns

Just as there are process pattern, approaches to development that are proven to work in practice, there are

also process antipatterns, approaches to development that are proven to be ineffective in practice. An

example of a process antipattern is hacking, an approach to development where little or no effort is spent

on analysis and design before coding begins. Unfortunately hacking is probably the most common

approach in use today to develop applications. Fundamentally, you first need to do some analysis, then

some design, then some coding. There is no way around it, and there is not a single piece of software that

can justifiably be developed any other way. How can you possibly develop software without first

identifying requirements for it? If there are no requirements then why are you building the software?

Second, what is easier to do, first draw a few diagrams which help you to iron out your design before you

begin coding, or to just start to madly develop code, throwing portions of it away and then rewriting it

when you discover that it does not work? I think that you will agree that there is something to be said for

starting out with a few bubbles and lines. It never makes sense to start with coding, you first have to do a

little analysis and design.

Having stated that, there is always a few developers who think that the software they are currently

working on is the one that breaks this rule. Because they are working on technical software, often for the

system or persistence layer, they delude themselves into thinking that they do not need to start with

analysis. Pure hogwash. I have been involved in the development of some very technical software, and

every time we began by documenting the requirements (i.e. we did analysis), we then modeled our design,

and then we coded. Throughout this process we discovered that we missed some requirements, forcing us

to update our design and then our code. The point to be made is that we did not hack out the code without

first thinking about what we wanted to build and how we wanted to build it. Yes this is common sense,

yet many developers do not seem to grasp the concept.

8. Summary

Process patterns are reusable building blocks from which your organization can tailor a mature software

process. In this white paper I described three types of process patterns: task process patterns that describe

the detailed steps for a specific task; stage process patterns that describe a series of iterative tasks; and

phase process patterns that describe a collection of iterative stages. Process patterns describe proven

approaches to developing software, approaches that can be used within your organization to increase the

quality, maintainability, and extensibility of software.

References and Recommended Reading

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.

Ambler, S.W. (1995). The Object Primer: The Application Developer’s Guide To Object Orientation.

New York: SIGS Books.

Ambler, S.W. (1998a). Building Object Applications That Work – Your Step-by-Step Handbook for

Developing Robust Systems With Object Technology. New York: SIGS Books/Cambridge University

Press.

Ambler, S. W. (1998b). Process Patterns: Building Large-Scale Systems Using Object Technology. New

York: SIGS Books/Cambridge University Press.

Ambler, S. W. (1998c). More Process Patterns: Delivering Large-Scale Systems Using Object

Technology. New York: SIGS Books/Cambridge University Press.

Baudoin, C., Hollowell, G. (1996). Realizing The Object-Oriented Life Cycle. Upper Saddle River, NJ:

Prentice-Hall, Inc.

Boehm, B.W. (1988). A Spiral Model Of Software Development And Enhancement. IEEE Computer, pp.

61-72, 21(5).

Coplien, J.O. (1995). A Generative Development-Process Pattern Language. Pattern Languages of

Program Design, Addison Wesley Longman, Inc., pp. 183-237.

DeLano, D.E. and Rising, L. (1998). Patterns for System Testing. Pattern Languages of Program Design

3, Addison Wesley Longman, Inc., pp. 503-525.

Emam, K. E., Drouin J., and Melo, W. 1998. SPICE: The Theory and Practice of Software Process

Improvement and Capability Determination. Los Alamitos, California: IEEE Computer Society Press.

Foote, B. and Opdyke, W.F. (1995). Life cycle and Refactoring Patterns That Support Evolution and

Reuse. Pattern Languages of Program Design, Addison Wesley Longman, Inc., pp. 239-257.

Graham, I. (1995). Migrating To Object Technology. Reading, MA: Addison-Wesley Publishers Ltd.

Graham, I., Henderson-Sellers, B. & Younessi, H. (1997). The OPEN Process Specification. New York:

ACM Press Books.

Harrison, N.B. (1996). Organizational Patterns for Teams. Pattern Languages of Program Design 2,

Addison-Wesley Publishing Company., pp. 345-352.

Rational (1996). Rational Rose: A Rational Approach To Software Development Using Rational Rose.

Rational Software Corporation, CA: Santa Clara.

Software Engineering Institute (1995). The Capability Maturity Model: Guidelines for Improving the

Software Process. Reading MA: Addison-Wesley Publishing Company.

Weir, C. (1998). Patterns for Designing in Teams. Pattern Languages of Program Design 3, eds. Martin,

R.C., Riehle, D., and Buschmann, F., Addison Wesley Longman, Inc., pp. 487-501.
10. Glossary

Antipattern – The description of an approach to solving a common problem, an approach that in time

proves to be wrong or highly ineffective.

Object-Oriented Software Process (OOSP) – A collection of process patterns that together describe a

complete process for developing, maintaining, and supporting software.

Pattern – The description of a general solution to a common problem or issue from which a detailed

solution to a specific problem may be determined. Software development patterns come in many flavors,

including but not limited to analysis patterns, design patterns, and process patterns.

Phase process pattern – A process pattern that depicts the interactions between the stage process patterns

for a single project phase.

Process – A series of actions in which one or more inputs are used to produce one or more outputs.

Process antipattern – An antipattern which describes an approach and/or series of actions for developing

software that is proven to be ineffective and often detrimental to your organization.

Process pattern – A pattern which describes a proven, successful approach and/or series of actions for

developing software.

Project phase – The large components of the OOSP which are performed in a serial manner. The four

project phases are Initiate, Construct, Deliver, and Maintain & Support.

Project stage – The components of a project phase, performed in an iterative manner, that make up a

project phase. For example, the project stages that make up the Construct Phase are Model, Test In The

Small, Program, and Generalize.

Stage process pattern – A process pattern which depicts the steps, often performed iteratively, of a

single project stage.

Task process pattern – A process pattern that depicts the detailed steps to perform a specific task, such

as detailed modeling or performing a technical review.
11. About the Author

Scott W. Ambler is a object development consultant living in the village of Sharon, Ontario, which is 60

km north of Toronto, Canada. Scott is the author of The Object Primer (SIGS Books/Cambridge

University Press, 1995), Building Object Applications That Work (SIGS Books/Cambridge University

Press, 1998), Process Patterns (SIGS Books/Cambridge University Press, July 1998), and More Process

Patterns (SIGS Books/Cambridge University Press, September 1998). He has worked with OO technology

since 1990 in various roles: Business Architect, System Analyst, System Designer, Project Manager,

Smalltalk programmer, Java programmer, and C++ programmer. He has also been active in education

and training as both a formal trainer and as an object mentor. Scott is a contributing editor with Software

Development (http://www.sdmagazine.com) and writes columns for Object Magazine

(http://www.sigs.com) and Computing Canada (http://www.plesman.com). He can be reached via e-mail

at scott@ambysoft.com and you can visit his personal web site http://www.ambysoft.com.

About The Object Primer

The Object Primer is a straightforward, easy to understand introduction to object-oriented analysis and

design techniques. Object-orientation is the most important change to system development since the

advent of structured methods. While OO is often used to develop complex systems, OO itself does not

need to be complicated. This book is different than any other book ever written about object-orientation

(OO) – It’s written from the point of view of a real-world developer, somebody who has lived through the

difficulty of learning this exciting new approach. Readers of The Object Primer have found it to be one of

the easiest introductory books in OO development on the market today, many of whom have shared their

comments and kudos with me. Topics include CRC modeling, use cases, use-case scenario testing, and

class diagramming.

About Building Object Applications That Work

Building Object Applications That Work is about: architecting your applications so

that they’re maintainable and extensible; analysis and design techniques using the

Unified Modeling Language (UML); creating applications for stand-alone,

client/server, and distributed environments; using both relational and object-oriented

(OO) databases for persistence; OO metrics; applying OO patterns to improve the

quality of your applications; OO testing (it’s harder, not easier); user interface design

so your users can actually work with the systems that you build; and coding applications

in a way that makes them maintainable and extensible.

Uses the

Unified

Modeling

Language

About Process Patterns and More Process Patterns

Process Patterns (available July 1998) and More Process Patterns (available September

1998) are ground-breaking texts, describing proven, reusable techniques for developing

large-scale, mission-critical object-oriented software that is robust and extensible. A

process pattern describes a collection of general techniques, actions, and/or tasks for

developing object-oriented software. The focus of the books is The Object-Oriented

Software Process (OOSP), presented as a collection of process patterns that are geared

toward medium to large-size organizations that need to develop software that support

their main line of business. Process patterns are the reusable building blocks from

which your organization will develop a tailored software process that meets its exact

needs. This book can now be pre-ordered from Cambridge University press (see

http://www.ambysoft.com/processPatterns.html for details)!

Uses the

Unified

Modeling

Language

About the AmbySoft Inc. Java Coding Standards

The AmbySoft Inc. Java Coding Standards summarizes in one place the common coding standards for

Java, as well as presents several guidelines for improving the quality of your code. It is in Adobe PDF

format and can be downloaded from http://www.ambysoft.com.
12. Change History of This Document

May 30th, 1998:

This document was originally posted on May 4th, 1998 and it mirrored the first part of an article that I

wrote for the May 1998 issue of Object Magazine. In both the original version of this paper and the

article I argued that I believe that there are five types of process patterns, the three presented here plus life

cycle process patterns and approach process patterns. Although I still believe that these high-level types

of process patterns exist, it was too radical of a departure from the current work in process patterns, which

for the most part focuses on task process patterns, and as a result I took a lot of heat from other pattern

developers. The short story is that for now I will back off from the concept and be content with pushing

phase and stage process patterns which are the focus of my book Process Patterns anyway. The second

major change is that I present the process patterns in this paper as templated patterns, patterns which are

presented in a specific format, instead of degenerate patterns, patterns that are not presented using a

template. Common practice is to present templated patterns, which is how phase and stage process

patterns are presented in my book (but not task process patterns for readability reasons), so I decided to

flesh out the paper by presenting the example patterns using a template. In the article and the previous

version of the paper I concentrated for the most part on the solution aspect of the patterns and not on the

context and forces surrounding the patterns. This misjudgment has been rectified.

June 27th, 1998:

References to More Process Patterns added.
Index

A

Alexander, Christopher1

Antipattern... 11, 13

coding before documenting...........................6

Author

contacting .. 14

B

Build process..7

C

Code inspection..3

D

Defects

cost of fixing ..3

Document review ...3

Documentation

of source code...6

H

Hacking ... 11

vs. iterative development9

I

Integration ...7

Iterative development

vs. hacking...9

M

Mature software process 10

Model review ...3

Modeling

and programming...6

O

Object-Oriented Software Process (OOSP) 13

OOSP process pattern language........................2

Optimization..7

Organizational pattern

and process patterns1

P

Packaging ..7

Pattern ... 13

Phase process pattern..................................2, 13

construct...8

Process ...13

Process antipattern11, 13

Process improvement......................................10

Process pattern ...13

and organizational patterns...........................1

and process improvement............................10

construct...8

creator-reviewer..3

group validation..3

program..5

review...3

technical review..3

types of ...2

validation by teams3

Programming

and modeling..6

Project phase ..13

Project stage ...13

Prototype review...3

R

Requirement review..3

Reuse..6

S

Scott Ambler

contacting...14

Sharing development approaches....................10

Stage process pattern2, 13

program..5

Standard

and code inspections7

Synchronizing code and models........................7

T

Task process pattern2, 13

creator-reviewer..3

group validation..3

review...3

technical review..3

validation by teams3

Test In The Small Stage

and preparing for code inspections................7

