
An Introduction to
Process Patterns

An AmbySoft Inc. White Paper

Scott W. Ambler
Object-Oriented Consultant

AmbySoft Inc.

Material for this paper has be excerpted from:

Process Patterns: Building Large-Scale Systems Using
Object Technology

Scott W. Ambler
SIGS Books/Cambridge University Press, July 1998

and

More Process Patterns: Delivering Large-Scale Systems
Using Object Technology

Scott W. Ambler
SIGS Books/Cambridge University Press, September 1998

This Version: June 27, 1998

Copyright 1998 Scott W. Ambler

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

2

Table Of Contents

1. WHAT IS A PROCESS PATTERN?..1

2. TYPES OF PROCESS PATTERNS ...2

3. TASK PROCESS PATTERN – TECHNICAL REVIEW..3

3.1 FORCES ..3
3.2 INITIAL CONTEXT ...3
3.3 SOLUTION ..3
3.4 RESULTING CONTEXT ...4

4. STAGE PROCESS PATTERN – PROGRAM...5

4.1 FORCES ..5
4.2 INITIAL CONTEXT/ENTRY CONDITIONS..5
4.3 SOLUTION ..6
4.4 RESULTING CONTEXT/EXIT CONDITIONS ...7

5. PHASE PROCESS PATTERNS ...8

5.1 FORCES ..8
5.2 INITIAL CONTEXT/ENTRY CONDITIONS..8
5.3 SOLUTION ..8
5.4 RESULTING CONTEXT/EXIT CONDITIONS ...9

6. WHY PROCESS PATTERNS? ..10

7. PROCESS ANTIPATTERNS ...11

8. SUMMARY...11

9. REFERENCES AND RECOMMENDED READING ...12

10. GLOSSARY ..13

11. ABOUT THE AUTHOR...14

12. CHANGE HISTORY OF THIS DOCUMENT ..15

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

1

Not only do the same type of problems occur across domains, problems whose solutions are addressed by
design patterns and analysis patterns, but the strategies that software professionals employ to solve
problems recur across organizations, strategies that can be described by process patterns. A process
pattern describes a collection of general techniques, actions, and/or tasks for developing object-oriented
software. Process patterns are the reusable building blocks from which your organization will develop a
tailored software process that meets its exact needs.

1. What is a Process Pattern?
To define what a process pattern is, I would first like to explore its two root
words: process and pattern. A process is defined as a series of actions in
which one or more inputs are used to produce one or more outputs. Defining
a pattern is a little more difficult. Alexander (1979) hints at the definition of
a pattern by pointing out that the same broad features keep recurring over
and over again, although in their detailed appearance these broad features
are never the same. Alexander shows that although every building is unique,
each may be created by following a collection of general patterns. In other
words, a pattern is a general solution to a common problem or issue, one
from which a specific solution may be derived.

The repetition of patterns
is quite a different thing
than the repetition of
parts. Indeed, the
different parts will be
unique because the
patterns are the same.
– Christopher
Alexander

Coplien (1995), in his paper “A Generative Development-Process Pattern Language,” hints at the
definition for the term “process pattern” in his statement that “the patterns of activity within an
organization (and hence within its project) are called a process.” For the purposes of this paper, I define a
process pattern to be a collection of general techniques, actions, and/or tasks (activities) for developing
object-oriented software. An important feature of a process pattern is that it describes what you should do
but not the exact details of how you should do something. When applied together in an organized
manner, process patterns can be used to construct software process for your organization. Because process
patterns do not specify how to perform a given task, they can be used reusable building blocks from which
you may tailor a software process that meets the specific needs of your organization.

Related to process patterns are something called organizational patterns, patterns that describe common
management techniques or organizational structures. The fact is that process patterns and organizational
patterns go hand-in-hand, although the focus of this white paper, however, is not organizational patterns.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

2

2. Types of Process Patterns
One feature which I believe is important for process patterns is that it be possible to
develop them for all aspects of development. The point to be made is that the scope
of a single process pattern may range from a high-level view of how applications
are developed to a more-detailed view of a specific portion of the software process.

Patterns can exist
at all scales.
– Christopher
Alexander

I believe that there are three types of process patterns. In order of increasing scale they are:

1. Task process patterns. This type of process pattern depicts the detailed steps to perform a specific
task, such as the Technical Review and Reuse First process patterns

2. Stage process patterns. This type of process pattern depicts the steps, which are often performed

iteratively, of a single project stage. A project stage is a higher-level form of process pattern, one that
is often composed of several task process patterns. A stage process pattern is presented for each
project stage of a software process, such as the Program stage presented in Figure 2, of the Object-
Oriented Software Process (OOSP) of Figure 4.

3. Phase process patterns. This type of process pattern depicts the interactions between the stage

process patterns for a single project phase, such as the Initiate and Delivery phases. A phase process
pattern, the Construct pattern is depicted in Figure 3, is a collection of two or more stage process
patterns. Project phases are performed in a serial manner, this is true of both structured development
and of object development. A common myth within the object industry is that object-oriented (OO)
development is iterative in nature. Although this may be true of the small, pilot projects prevalent in
the early 1990s, it is not true of today’s large-scale, mission-critical applications. The reality is that
OO development is serial in the large, iterative in the small, delivering incremental releases over time
(Ambler, 1998b). Phase process patterns are performed in serial order, made up of stage process
patterns which are performed iteratively.

To date, the vast majority of the work in process patterns has been in what I would consider task process
patterns, and very little work in phase and stage process patterns (although you could easily argue that
some organizational patterns encroach on this territory). In the three following sections I will provide an
example each of a task process pattern, a stage process pattern, and a phase process pattern, all taken from
the OOSP process pattern language (Ambler, 1998b; Ambler 1998c). In Section 6 I present the Object-
Oriented Software Process (OOSP), a life cycle composed of phase and stage process patterns, which in
turn are enhanced by task process patterns. My experience is that when you look at process patterns from
the point of view of defining/tailoring a software process for an organization then you need the three types
of process patterns described in this section to be effective. I believe that task process patterns are a key
component of a software process, but that phase and stage process patterns are needed to organize them
and to put them into a meaningful context for your organization.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

3

3. Task Process Pattern – Technical Review
The deliverables created during development need to be validated to ensure that they meet the needs of
your user community and the quality standards of your organization. The Technical Review task process
pattern describes how to organize, conduct, and follow through on the review of one or more deliverables.
This pattern is of the same theme as the Validation by Teams (Harrison, 1996), Review (Coplien, 1995),
Creator-Reviewer (Weir, 1998), and Group Validation (Coplien, 1995) task process patterns.

3.1 Forces
There are several applicable forces motivating the Technical Review process pattern. First, the
deliverables (models, prototypes, documents, source code, …) produced during the development process
help to define the software and related products to be released to your user community, therefore you
should validate that each deliverable is of sufficient quality before building on it. Second, because the cost
of fixing defects increases the later they are detected in the development life cycle (Ambler, 1998a) as a
result of the error snowballing throughout your work, you want to detect defects as early as possible so you
may fix them early (and inexpensively). Third, because it is difficult to review your own work you want
“a second set of eyes” to review a deliverable. Fourth, you want to communicate your work to others, and
one way to do that is to have your teammates review the deliverables that you produce.

3.2 Initial Context
There are one or more deliverables to be reviewed, the deliverables are ready to be reviewed, and the
development team is ready to have the deliverables reviewed.

3.3 Solution
Figure 1 shows that there are six basic steps to the Technical Review process pattern (model reviews,
document reviews, prototype reviews, requirement reviews, and code inspections are all specific processes
that follow the Technical Review process pattern). The steps of a technical review are as follows:

1. The development team prepares for review. The item(s) that are to be reviewed are gathered,
organized appropriately, and packaged so that they may be presented to the reviewers.

2. The development team indicates that they are ready for review. The development team must
inform the review manager, often a member of quality assurance, when they are ready to have
their work reviewed as well as what they intend to have reviewed.

3. The review manager performs a cursory review. The first thing that the review manager must
do is determine if the development team has produced work that is ready to be reviewed. The
manager will probably discuss the development team’s work with the team leader and do a quick
rundown of what they have produced. The main goal is to ensure that the work to be reviewed is
good enough to warrant getting a review team together.

4. The review manager plans and organizes the review. The review manager must schedule a
review room and any equipment needed for the review, invite the proper people, and distribute
any materials ahead of time that are needed for the review. The potential contents of a review
package are discussed in the next section.

5. The review takes place. Technical reviews can take anywhere from several hours to several
days, depending on the size of what is being reviewed, although the best reviews are less than
two hours so as not to overwhelm the people involved. The entire development team should
attend, or at least the people responsible for what is being reviewed, to answer questions and to
explain/clarify their work. There are typically between three to five reviewers, as well as the
review manager, all of whom are responsible for doing the review. It is important that all

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

4

material is reviewed. It is too easy to look at something quickly and assume that it is right. It is
the job of the review facilitator to ensure that everything is looked at, that everything is
questioned.

6. The review results are acted on. A document is produced during the review describing both the
strengths and weaknesses of the work being reviewed. This document should provide both a
description of any weakness, why it is a weakness, and provide an indication of what needs to be
addressed to fix the weakness. This document will be given to the development team so that they
can act on it, and to the review manager to be used in follow-up reviews in which the work is
inspected again to verify that the weaknesses were addressed.

Indicate
readiness
for review

Perform
cursory

inspection

Organize
review

Hold
review

Act on
review
results

Prepare
for

review

.

Figure 1. The Technical Review process pattern.

3.4 Resulting Context
Senior management is assured that the development team has produced quality deliverables that meet the
needs of their user community. The development team, and the reviewers, have a better understanding of
the deliverables that they are building and how their work fits into the overall software project. Individual
team members and reviewers are likely to learn new techniques during the review, either techniques
applied to the deliverable itself, management techniques applied during the review, or development
techniques suggested during the review to improve the deliverable.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

5

4. Stage Process Pattern – Program
An important aspect of software development, one of many to be exact, is the actual development of the
source code. As experienced developers know, there is far more to programming than just sitting down at
a computer and typing in source code. The Program stage process pattern describes the iterative
tasks/activities of programming.

4.1 Forces
Programmers need to develop software that meets the needs of their user communities, needs that have
been reflected in the form of models and documents developed during the Model stage and the Define and
Validate Initial Requirements stage (Ambler, 1998b). The developed source code should reflect the
information contained in these deliverables, yet at the same time may drive changes to them as
programmers gain a detailed understanding of the domain (usually more detailed than the modelers have).
Furthermore, most organizations want software to be developed in a timely and efficient manner but at the
same time want it to be maintainable and extensible so that changes in the future may be made efficiently
and quickly.

4.2 Initial Context/Entry Conditions
Several conditions must be met before coding may begin. First, your design models should be in place for
the code that you intend to write. Second, your project infrastructure should be in place, defined during
the Define Infrastructure stage of the Initiate phase (see Figure 4). The infrastructure includes the
development and supporting tools that your programmers will use as well as the standards and guidelines
that they will follow. Third, programmers must be available to do the work.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

6

4.3 Solution
Figure 2 depicts the process pattern for the Program stage, showing that there is more to this stage than
simply writing source code: you need to understand the models, then seek out reusable artifacts to reduce
your work load, then document what you are going to write, then write the code, then inspect and improve
it, then test and fix it, and then finally package it.

Write
Source Code

Document Source
Code

Prepare Code for
Inspections

Synchronize
Source Code
With Models

Understand
Models

Reuse Existing
Code and

Components
Optimize Code

Integrate and
Package

Prepare
Integration

Plan

"Build" the
Software

Packaged
Application,
Source Code

Models,
Project

Infrastructure

Figure 2. The Program process pattern.

The very first thing that should occur before coding begins is that programmers must take the time to
understand the models that define what they are to build. Although this sounds straightforward and
obvious, it very often is not done. If programmers do not take the time to understand the model before they
begin coding, then why bother creating the models in the first place (ideally the programmers were
involved in the development of the design models)? The goal is for programmers to understand the design
issues and trade-offs involved, and how their code will fit into the overall application. They must invest
the time to understand both the problem and the solution before they write the code.

Once your programmers have taken the time to review the models and to understand what needs to be
built, they should then look to see what has already been built. One of the promises of object-oriented
development is that of increased reuse, but you need to recognize the fact that you can only increase reuse
on your projects if you choose to do so. This means that somebody has to make an effort to reuse existing
artifacts, and the best way to do so is to look for reusable artifacts before you start writing code. Your
design should have also considered reuse issues.

Before you write your source code, you should first document it. Although this seems non-intuitive at first,
experience shows that programmers who start by writing brief comments that describe their coding logic
are significantly more productive than programmers who do not. The reason for this is simple: the hard
part about programming is getting the logic right, not writing the actual code that implements that logic.
Writing source code before documenting it is a common process antipattern, one that you want to avoid if
possible. By documenting your logic first in the form of brief comments, also called pseudocode, you
invest the time to get your logic in place, avoiding the problem of writing a lot of code that later needs to
be scrapped because it does not work right. Think first, then code.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

7

Once programmers have invested the time to understand the models that they are implementing, searched
for reusable components to reduce their workload, and then written at least initial documentation for their
code, they are ready to actually begin writing object-oriented source code. The code that is written should
conform to the standards and guidelines defined and selected for your project – conformance that will be
verified by code reviews.

Throughout the coding process programmers must constantly take the time to synchronize their source
code with the model. During coding it often becomes clear that the models/documentation doe not include
all of the information needed by the coder. If this is the case, then the coder should first talk to the
modeler to determine a solution, and then both the model(s) and the code should be updated to reflect the
solution. The important thing is that the code reflects the information contained in the models and vice
versa.

The source code produced by a development team will be inspected, in whole or in part, as part of the Test
in the Small stage (Ambler, 1998b). To prepare for a code review, which will apply the Technical Review
task process pattern, a programmer should be reasonably assured that their code will pass inspection. This
means that the code satisfies the design, follows standards, is well documented, is easy to understand, and
is well written.

My experience is that you want to leave optimization to the end because you want to optimize only the
code that needs it: very often a small percentage of your code results in the vast majority of the processing
time, and this is the code that you should be optimizing. A classic mistake made by inexperienced
programmers it to try to optimize all of their code, even code that already runs fast enough. Personally, I
prefer to optimize the code that needs it and then move on to more interesting things than trying to
squeeze out every single CPU cycle.

Creating a build is the act of compiling and linking your source code in compiled languages such as Java
and C++, or packaging your code in languages like Smalltalk. As you would expect, you use tools called
compilers, linkers, and packagers to create a build, which I will refer to as “builders” for the sake of our
discussion. Successful builds produce software that can be run and tested, whereas unsuccessful builds
produce an indication of what your builder did not like about your code. Builds are important because they
help to find integration problems in your code; if your code does not integrate well, it will likely break
your build, and the build shows that your code does in fact compile – often an incredible morale booster
for your programming team.

Long before you attempt to integrate and package your application you must first have a plan to do so.
Three key deliverables are needed by the developers responsible for integrating and packaging your
application: an integration plan that describes the schedule, resources, and approach to integrating the
elements of an application, a version description document (VDD) that describes the elements of an
application and their intrarelationships, and a deployment diagram that shows how the software will be
deployed to the user community. To integrate and package your application, you must build and smoke-
test your software, produce the supporting documentation, and develop the installation process for your
software. If you perform daily builds, then the first step is straightforward, as you merely need to follow
your existing build procedure to gather and then build the source code files that make up your application.

4.4 Resulting Context/Exit Conditions
The following conditions must be met before the Program stage may be considered complete. First, your
code should have passed inspection. Second, the code should work (it passed testing). Third, the code
should have been optimized sufficiently. Fourth, if applicable the software should be integrated and
packaged for delivery.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

8

5. Phase Process Patterns
The main goal of the Construct phase, the second serial phase of the Object-Oriented Software Process
(OOSP) of Figure 4, is to build working software that is ready to be tested and delivered to your user
community. This software will be accompanied by the models and source code that was used to develop it,
a test plan to verify that the software works, any reusable artifacts that can be used on future projects, and
the initial documentation and training plans supporting the software.

5.1 Forces
There are several forces applicable to the Construct Phase, including a lack of understanding of how to
work the phase by both senior management and by developers; an unwarranted focus on programming to
the neglect of modeling, testing, and generalization; and a penchant by everyone involved to cut corners
and take shortcuts that more often than not result in poor quality software that is late and over budget
anyway.

5.2 Initial Context/Entry Conditions
The Construct phase can be entered two different ways, either from the Initiate phase or from the
Maintain and Support phase (see Figure 4). Regardless, there are several conditions that must be met
before the Construct phase may begin. First, the key project management documents (project plan,
estimate, schedule, risk assessment, …) should be available and up-to-date. Second, the project
infrastructure should be defined, or at least a good portion of it is defined, so that the tools, processes, and
standards are available to your development team. Third, the high-level requirements for your software
should be in place as well as the project charter for your team. Fourth, maintenance changes applicable to
the software you are constructing should be allocated to the release that you are working on (this is
applicable only for existing software that is being updated). Finally, your development team should be
selected and made available (as best as possible) for when they are needed by your project.

5.3 Solution
Figure 3 presents the Construct phase process pattern. An important implication of Figure 3 is that you
are not starting from scratch when you enter the Construct phase – important management documents
such as the project plan and initial risk assessment have been defined, the initial requirements for your
application should have been defined, the project infrastructure is (mostly) defined, and the funding and
charter for the project have been obtained. The four iterative stages of the Construct phase are highly
interrelated. The Model stage concentrates on the abstraction of the technical and/or problem domain via
the use of diagrams, documents, and prototypes. The Program stage (see Figure 2) focuses on the
development and documentation of program source code. The Generalize Stage is critical to your
organization’s reuse efforts as it focuses on identifying reusable items, or items that may become reusable
once modified, from a software project. This is effectively “opportunistic reuse” because you attempt to
develop reusable items by harvesting your work after the fact, instead of “systematic reuse” in which you
design software during modeling to be reusable. The goal of the Test In The Small Stage is to verify and
validate the deliverables developed by the other stages of the Construct Phase. In many ways this stage is
the equivalent of unit testing from the structured world combined with quality assurance techniques such
as code inspections and technical reviews.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

9

Construct

Test
in the
Small

Model

Program

.

Generalize

Management Documents,
Initial Requirements,

Project Infrastructure,
Project Funding,
Project Charter

Assure Quality, Manage the Project,
Train and Educate, Manage People,

Manage Risk, Manage Reuse,
Manage Metrics, Manage Deliverables,

Manage Infrastructure

Define
Infrastructure

Packaged Application,
Documentation,

Models, Source Code,
Management Documents,
Requirements Allocation

Matrix (RAM)

Allocated Maintenance Changes From Maintain
and Support

Figure 3. The Construct process pattern.

Just because the Construct Phase is iterative in nature, it DOES NOT imply that your developers are
allowed to start hacking. The reality of software development is that you must first identify and
understand the requirements for something, then you must model them, and then code them. If you have
not defined the requirements, then why are you building something? Do you honestly believe that it is
more productive for you to start writing code before investing the time to think about and to model what
you are building? Truly top-notch developers also know that they must verify their work before moving
on to the next task. There’s no value modeling requirements that are invalid, or writing source code based
on an incorrect model. This means that you need to test your work as you develop it, not at the end when
it is often too late to fix discovered problems. I’m not saying that you have to define all of the
requirements first, then do all of the modeling, then write all of the code. What I am saying is that any
code that you write should be based on a validated model, and that any modeling you do should be based
on one or more validated requirements.

5.4 Resulting Context/Exit Conditions
The Construct phase effectively ends when a code/development freeze has been declared. For a
code/development freeze to be official, the following deliverables must be in place (when applicable):
Models (Class Model, Use-Case Model, Sequence Diagrams, …), Requirements Allocation Matrix
(RAM), Source code, Master Test/QA Plan, User Documentation, Operations Documentation, Support
Documentation, the software itself, Training Plan, Release Plan, and Lessons Learned. At this point your
software is ready to move on to the Deliver phase (see Figure 4) where it will be tested in the large,
reworked as needed, and released to your user community.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

10

6. Why Process Patterns?
Process patterns are an excellent mechanism for communicating approaches to software development that
have proven to be effective in practice. Furthermore, process patterns are the reusable building blocks
from which your organization may tailor a mature software process. For example, in Figure 4 we see a
depiction of the Object-Oriented Software Process (OOSP), which is composed of four serial phases that in
turn are composed of iterative stages (Ambler, 1998b; Ambler, 1998c). The “big arrow” at the bottom of
the diagram indicates important tasks critical to the success of a project that are applicable to all stages of
development. The phase and stage process patterns, as well as the “big arrow tasks,” are in turn enhanced
by task process patterns. Process patterns, in the form of the OOSP, have been used to form a mature
software process for the development of large-scale, mission-critical software using object technology.

Construct

Test
in the
Small

Model

Program

Initiate

Justify

Define and
Validate

Initial
Requirements

Define
Infrastructure

Deliver Maintain and Support

Support

Identify
Defects and

Enhancements

.

Generalize

Define
Initial

Management
Documents

Assure Quality, Manage the Project, Train and Educate, Manage People, Manage Risk, Manage Reuse, Manage Metrics, Manage Deliverables, Manage Infrastructure

Test
in the
Large

Release

AssessRework

Figure 4. The Object-Oriented Software Process (OOSP).

As you can see in Figure 4, there are four project phases within the OOSP – Initiate, Construct, Deliver,
and Maintain and Support – each of which is described by a phase process pattern. Also in Figure 4, you
see that there are 14 project stages in the OOSP – Justify, Define and Validate Initial Requirements,
Define Initial Management Documents, Define Infrastructure, Model, Program, Test In The Small,
Generalize, Test In The Large, Rework, Release, Assess, Support, and Identify Defects and Enhancements
– each of which is described by a stage process pattern. Project stages are performed in an iterative
manner within the scope of a single project phase. Project phases, on the other hand, are performed in a
serial manner within the OOSP.

As indicated above, I believe that process patterns are a key enabler for tailoring/defining a mature
software process for your organization. The reality of process improvement, however, is that you cannot
make all of the changes that you want to immediately; it is simply too great a change for your
organization to absorb at once. This is why we have efforts such as the Software Engineering Institute’s
(SEI’s) Capability Maturity Model (CMM) efforts (SEI, 1995) and the Software Process Improvement
Capability Determination (SPICE) efforts (Emam, Drouin, and Melo, 1998) of the International Standards
Organization (ISO). Both of these organizations suggest that you prioritize the process improvements that
your organization needs to make, expect that it will take several years to make the needed changes, and
expect that you will experience difficulties while doing so. Experience shows that organizations that try to
make immediate, large-scale process changes are likely to fail doing so.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

11

7. Process Antipatterns
Just as there are process pattern, approaches to development that are proven to work in practice, there are
also process antipatterns, approaches to development that are proven to be ineffective in practice. An
example of a process antipattern is hacking, an approach to development where little or no effort is spent
on analysis and design before coding begins. Unfortunately hacking is probably the most common
approach in use today to develop applications. Fundamentally, you first need to do some analysis, then
some design, then some coding. There is no way around it, and there is not a single piece of software that
can justifiably be developed any other way. How can you possibly develop software without first
identifying requirements for it? If there are no requirements then why are you building the software?
Second, what is easier to do, first draw a few diagrams which help you to iron out your design before you
begin coding, or to just start to madly develop code, throwing portions of it away and then rewriting it
when you discover that it does not work? I think that you will agree that there is something to be said for
starting out with a few bubbles and lines. It never makes sense to start with coding, you first have to do a
little analysis and design.

Having stated that, there is always a few developers who think that the software they are currently
working on is the one that breaks this rule. Because they are working on technical software, often for the
system or persistence layer, they delude themselves into thinking that they do not need to start with
analysis. Pure hogwash. I have been involved in the development of some very technical software, and
every time we began by documenting the requirements (i.e. we did analysis), we then modeled our design,
and then we coded. Throughout this process we discovered that we missed some requirements, forcing us
to update our design and then our code. The point to be made is that we did not hack out the code without
first thinking about what we wanted to build and how we wanted to build it. Yes this is common sense,
yet many developers do not seem to grasp the concept.

8. Summary
Process patterns are reusable building blocks from which your organization can tailor a mature software
process. In this white paper I described three types of process patterns: task process patterns that describe
the detailed steps for a specific task; stage process patterns that describe a series of iterative tasks; and
phase process patterns that describe a collection of iterative stages. Process patterns describe proven
approaches to developing software, approaches that can be used within your organization to increase the
quality, maintainability, and extensibility of software.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

12

9. References and Recommended Reading

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.

Ambler, S.W. (1995). The Object Primer: The Application Developer’s Guide To Object Orientation.
New York: SIGS Books.

Ambler, S.W. (1998a). Building Object Applications That Work – Your Step-by-Step Handbook for
Developing Robust Systems With Object Technology. New York: SIGS Books/Cambridge University
Press.

Ambler, S. W. (1998b). Process Patterns: Building Large-Scale Systems Using Object Technology. New
York: SIGS Books/Cambridge University Press.

Ambler, S. W. (1998c). More Process Patterns: Delivering Large-Scale Systems Using Object
Technology. New York: SIGS Books/Cambridge University Press.

Baudoin, C., Hollowell, G. (1996). Realizing The Object-Oriented Life Cycle. Upper Saddle River, NJ:
Prentice-Hall, Inc.

Boehm, B.W. (1988). A Spiral Model Of Software Development And Enhancement. IEEE Computer, pp.
61-72, 21(5).

Coplien, J.O. (1995). A Generative Development-Process Pattern Language. Pattern Languages of
Program Design, Addison Wesley Longman, Inc., pp. 183-237.

DeLano, D.E. and Rising, L. (1998). Patterns for System Testing. Pattern Languages of Program Design
3, Addison Wesley Longman, Inc., pp. 503-525.

Emam, K. E., Drouin J., and Melo, W. 1998. SPICE: The Theory and Practice of Software Process
Improvement and Capability Determination. Los Alamitos, California: IEEE Computer Society Press.

Foote, B. and Opdyke, W.F. (1995). Life cycle and Refactoring Patterns That Support Evolution and
Reuse. Pattern Languages of Program Design, Addison Wesley Longman, Inc., pp. 239-257.

Graham, I. (1995). Migrating To Object Technology. Reading, MA: Addison-Wesley Publishers Ltd.

Graham, I., Henderson-Sellers, B. & Younessi, H. (1997). The OPEN Process Specification. New York:
ACM Press Books.

Harrison, N.B. (1996). Organizational Patterns for Teams. Pattern Languages of Program Design 2,
Addison-Wesley Publishing Company., pp. 345-352.

Rational (1996). Rational Rose: A Rational Approach To Software Development Using Rational Rose.
Rational Software Corporation, CA: Santa Clara.

Software Engineering Institute (1995). The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading MA: Addison-Wesley Publishing Company.

Weir, C. (1998). Patterns for Designing in Teams. Pattern Languages of Program Design 3, eds. Martin,
R.C., Riehle, D., and Buschmann, F., Addison Wesley Longman, Inc., pp. 487-501.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

13

10. Glossary

Antipattern – The description of an approach to solving a common problem, an approach that in time
proves to be wrong or highly ineffective.

Object-Oriented Software Process (OOSP) – A collection of process patterns that together describe a
complete process for developing, maintaining, and supporting software.

Pattern – The description of a general solution to a common problem or issue from which a detailed
solution to a specific problem may be determined. Software development patterns come in many flavors,
including but not limited to analysis patterns, design patterns, and process patterns.

Phase process pattern – A process pattern that depicts the interactions between the stage process patterns
for a single project phase.

Process – A series of actions in which one or more inputs are used to produce one or more outputs.

Process antipattern – An antipattern which describes an approach and/or series of actions for developing
software that is proven to be ineffective and often detrimental to your organization.

Process pattern – A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Project phase – The large components of the OOSP which are performed in a serial manner. The four
project phases are Initiate, Construct, Deliver, and Maintain & Support.

Project stage – The components of a project phase, performed in an iterative manner, that make up a
project phase. For example, the project stages that make up the Construct Phase are Model, Test In The
Small, Program, and Generalize.

Stage process pattern – A process pattern which depicts the steps, often performed iteratively, of a
single project stage.

Task process pattern – A process pattern that depicts the detailed steps to perform a specific task, such
as detailed modeling or performing a technical review.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

14

11. About the Author
Scott W. Ambler is a object development consultant living in the village of Sharon, Ontario, which is 60
km north of Toronto, Canada. Scott is the author of The Object Primer (SIGS Books/Cambridge
University Press, 1995), Building Object Applications That Work (SIGS Books/Cambridge University
Press, 1998), Process Patterns (SIGS Books/Cambridge University Press, July 1998), and More Process
Patterns (SIGS Books/Cambridge University Press, September 1998). He has worked with OO technology
since 1990 in various roles: Business Architect, System Analyst, System Designer, Project Manager,
Smalltalk programmer, Java programmer, and C++ programmer. He has also been active in education
and training as both a formal trainer and as an object mentor. Scott is a contributing editor with Software
Development (http://www.sdmagazine.com) and writes columns for Object Magazine
(http://www.sigs.com) and Computing Canada (http://www.plesman.com). He can be reached via e-mail
at scott@ambysoft.com and you can visit his personal web site http://www.ambysoft.com.

About The Object Primer
The Object Primer is a straightforward, easy to understand introduction to object-oriented analysis and
design techniques. Object-orientation is the most important change to system development since the
advent of structured methods. While OO is often used to develop complex systems, OO itself does not
need to be complicated. This book is different than any other book ever written about object-orientation
(OO) – It’s written from the point of view of a real-world developer, somebody who has lived through the
difficulty of learning this exciting new approach. Readers of The Object Primer have found it to be one of
the easiest introductory books in OO development on the market today, many of whom have shared their
comments and kudos with me. Topics include CRC modeling, use cases, use-case scenario testing, and
class diagramming.

About Building Object Applications That Work
Building Object Applications That Work is about: architecting your applications so
that they’re maintainable and extensible; analysis and design techniques using the
Unified Modeling Language (UML); creating applications for stand-alone,
client/server, and distributed environments; using both relational and object-oriented
(OO) databases for persistence; OO metrics; applying OO patterns to improve the
quality of your applications; OO testing (it’s harder, not easier); user interface design
so your users can actually work with the systems that you build; and coding applications
in a way that makes them maintainable and extensible.

Uses the

Unified
Modeling
Language

About Process Patterns and More Process Patterns
Process Patterns (available July 1998) and More Process Patterns (available September
1998) are ground-breaking texts, describing proven, reusable techniques for developing
large-scale, mission-critical object-oriented software that is robust and extensible. A
process pattern describes a collection of general techniques, actions, and/or tasks for
developing object-oriented software. The focus of the books is The Object-Oriented
Software Process (OOSP), presented as a collection of process patterns that are geared
toward medium to large-size organizations that need to develop software that support
their main line of business. Process patterns are the reusable building blocks from
which your organization will develop a tailored software process that meets its exact
needs. This book can now be pre-ordered from Cambridge University press (see
http://www.ambysoft.com/processPatterns.html for details)!

Uses the

Unified
Modeling
Language

About the AmbySoft Inc. Java Coding Standards
The AmbySoft Inc. Java Coding Standards summarizes in one place the common coding standards for
Java, as well as presents several guidelines for improving the quality of your code. It is in Adobe PDF
format and can be downloaded from http://www.ambysoft.com.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

15

12. Change History of This Document

May 30th, 1998:
This document was originally posted on May 4th, 1998 and it mirrored the first part of an article that I
wrote for the May 1998 issue of Object Magazine. In both the original version of this paper and the
article I argued that I believe that there are five types of process patterns, the three presented here plus life
cycle process patterns and approach process patterns. Although I still believe that these high-level types
of process patterns exist, it was too radical of a departure from the current work in process patterns, which
for the most part focuses on task process patterns, and as a result I took a lot of heat from other pattern
developers. The short story is that for now I will back off from the concept and be content with pushing
phase and stage process patterns which are the focus of my book Process Patterns anyway. The second
major change is that I present the process patterns in this paper as templated patterns, patterns which are
presented in a specific format, instead of degenerate patterns, patterns that are not presented using a
template. Common practice is to present templated patterns, which is how phase and stage process
patterns are presented in my book (but not task process patterns for readability reasons), so I decided to
flesh out the paper by presenting the example patterns using a template. In the article and the previous
version of the paper I concentrated for the most part on the solution aspect of the patterns and not on the
context and forces surrounding the patterns. This misjudgment has been rectified.

June 27th, 1998:
References to More Process Patterns added.

Copyright 1998 Scott W. Ambler

Visit WWW.Ambysoft.com for more White Papers on Object-Oriented Development

16

Index

A

Alexander, Christopher1
Antipattern... 11, 13

coding before documenting...........................6
Author

contacting .. 14

B

Build process..7

C

Code inspection..3

D

Defects
cost of fixing ..3

Document review ...3
Documentation

of source code...6

H

Hacking ... 11
vs. iterative development9

I

Integration ...7
Iterative development

vs. hacking...9

M

Mature software process 10
Model review ...3
Modeling

and programming...6

O

Object-Oriented Software Process (OOSP) 13
OOSP process pattern language........................2
Optimization..7
Organizational pattern

and process patterns1

P

Packaging ..7
Pattern ... 13

Phase process pattern..................................2, 13
construct...8

Process ...13
Process antipattern11, 13
Process improvement......................................10
Process pattern ...13

and organizational patterns...........................1
and process improvement............................10
construct...8
creator-reviewer..3
group validation..3
program..5
review...3
technical review..3
types of ...2
validation by teams3

Programming
and modeling..6

Project phase ..13
Project stage ...13
Prototype review...3

R

Requirement review..3
Reuse..6

S

Scott Ambler
contacting...14

Sharing development approaches....................10
Stage process pattern2, 13

program..5
Standard

and code inspections7
Synchronizing code and models........................7

T

Task process pattern2, 13
creator-reviewer..3
group validation..3
review...3
technical review..3
validation by teams3

Test In The Small Stage
and preparing for code inspections................7

