

Smart Client Architecture
and Design Guide

Foreword by Mark Boulter

Smart Client Architecture
and Design Guide

patterns & practices

David Hill, Microsoft Corporation

Brenton Webster, Microsoft Corporation

Edward A. Jezierski, Microsoft Corporation

Srinath Vasireddy, Microsoft Corporation

Mo Al-Sabt, Microsoft Corporation

Blaine Wastell, Ascentium Corporation

Jonathan Rasmusson, ThoughtWorks

Paul Gale, ThoughtWorks

Paul Slater, Wadeware LLC

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory, BizTalk,
InfoPath, MSDN, Outlook, Visual Basic, Visual C++, Visual C#, Visual Studio, and
Win32 are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Foreword vii

Chapter 1
Introduction 1

What Is a Smart Client? . 1
Rich Client Applications . 2
Thin Client Applications . 2
Smart Client Applications . 3

Types of Smart Clients . 7
Windows Smart Client Applications . 8
Office Smart Client Applications. 8
Mobile Smart Client Applications . 10

Choosing Between Smart Clients and Thin Clients . 10
Smart Client Architectural Challenges . 11
Scope of This Guide . 13
How to Use This Guide . 13
Who Should Read This Guide. 14

Prerequisites . 14
Chapter Outlines . 14

Chapter 1: Introduction . 14
Chapter 2: Handling Data . 15
Chapter 3: Getting Connected . 15
Chapter 4: Occasionally Connected Smart Clients . 15
Chapter 5: Security Considerations . 15
Chapter 6: Using Multiple Threads . 15
Chapter 7: Deploying and Updating Smart Client Applications 16
Chapter 8: Smart Client Application Performance . 16

Summary . 16
More Information . 16

Chapter 2
Handling Data 17

Types of Data . 18
Read-Only Reference Data . 18
Transient Data . 19

Caching Data . 19
The Caching Application Block . 22

Data Concurrency . 24

iv Smart Client Architecture and Design Guide

Using ADO.NET DataSets to Manage Data . 25
Merging Data with Datasets. 26
Increasing the Performance of Datasets. 26

Windows Forms Data Binding. 27
Windows Forms Data Binding Architecture . 28
Binding Data to Windows Forms Controls . 30

Summary . 37

Chapter 3
Getting Connected 39

Loosely Coupled and Tightly Coupled Systems . 39
Communication Options. 40

.NET Enterprise Services . 40

.NET Remoting . 42
Message Queuing . 44
Web Services . 45

Choosing a Communication Option. 47
Designing Connected Smart Client Applications . 48

Use Coarse-Grained, Encapsulated Messages . 48
Avoid Distributed ACID Transactions . 48
Avoid Sending Datasets Across the Network. 49
Break Up Large Datasets. 49
Version Your Web Services and Assemblies . 49

Summary . 50

Chapter 4
Occasionally Connected Smart Clients 51

Common Occasionally Connected Scenarios. 52
Occasionally Connected Design Strategies . 53

The Data-Centric Approach. 55
The Service-Oriented Approach . 57

Designing Occasionally Connected Smart Client Applications
Using a Service-Oriented Approach. 59
Favoring Asynchronous Communication . 59
Minimizing Complex Network Interactions. 60
Adding Data Caching Capabilities. 61
Managing Connections . 62
Designing Store-and-Forward Mechanisms . 64
Managing Data and Business Rule Conflicts. 65
Interacting with CRUD-Like Web Services . 71

Using a Task-Based Approach . 72
Handling Dependencies . 73
Summary . 77

 Contents v

Chapter 5
Security Considerations 79

Authentication. 80
Smart Client Authentication Scenarios . 80
Choosing the Right Authentication Model . 83
Network Access Authentication Types. 84
Gathering and Validating User Credentials . 89
Authentication Guidelines . 91

Authorization. 92
Types of Authorization . 92
Adding Authorization Capabilities to Your Application. 94
Authorization Guidelines . 95
Authorizing Functionality When the Client Is Offline . 96
The Authorization and Profile Application Block . 97

Input Validation . 97
Handling Sensitive Data . 98

Determining Which Data to Store on the Client . 99
Techniques for Protecting Sensitive Data . 100

Code Access Security . 102
Code Access Security Permission Resolution . 104
Designing for Code Access Security . 105

Summary . 112

Chapter 6
Using Multiple Threads 113

Multithreading in the .NET Framework . 113
Choosing Between Synchronous and Asynchronous Calls 114
Choosing Between Foreground and Background Threads . 114
Handling Locking and Synchronization . 115
Using Timers. 116

When to Use Multiple Threads . 117
Communicating Over a Network . 118
Performing Local Operations . 118
Distinguishing Tasks of Varying Priority . 119
Application Startup . 119

Creating and Using Threads. 119
Using the ThreadPool Class . 119
Using the Thread Class . 121
Using Delegates . 122
Calling Web Services Asynchronously . 125

Using Tasks to Handle Interaction Between the UI Thread and Other Threads. 126
Defining a Task Class . 129
Using the Task Class. 134

Summary . 136

vi Smart Client Architecture and Design Guide

Chapter 7
Deploying and Updating Smart Client Applications 137

Deploying the .NET Framework . 138
Preinstalling the .NET Framework . 139
Installing the .NET Framework with an Application . 139

Deploying Smart Client Applications . 140
No-Touch Deployment . 141
No-Touch Deployment with an Application Update Stub . 144
Running Code from a File Share . 146
Xcopy Deployment . 147
Windows Installer Packages. 147

Choosing the Right Deployment Approach. 149
Deploying Smart Client Updates . 151

No-Touch Deployment Updates . 152
Automatic Updates . 152
Updates from a File Share . 153
Xcopy Updates . 153
Windows Installer Updates. 154

Choosing the Right Update Approach . 154
Summary . 156

Chapter 8
Smart Client Application Performance 157

Designing for Performance . 158
Data Caching Guidelines . 160
Network Communications Guidelines . 161
Threading Guidelines . 161
Transaction Guidelines. 163
Optimizing Application Startup Time . 164
Managing Available Resources . 165
Optimizing Windows Forms Performance. 169

Performance Tuning and Diagnosis . 175
Setting Performance Goals . 175
Performance Tuning Process . 177
Performance Tools. 179

Summary . 183
References . 183

Collaborators and Reviewers 185

Index 187

Additional Resources 198

Foreword

The Microsoft®.NET Framework and Windows Forms are a great platform for
building smart client applications that combine all the power, flexibility, and great
user experience of the rich client application model with the ease of deployment and
stability of browser-based applications. The .NET Framework solves DLL versioning
conflicts and simplifies deployment. Windows Forms has a powerful library of user
interface components and an-easy-to use forms designer that combines the ease of
use of the Microsoft Visual Basic® 6.0 programming model with the power and
flexibility of the .NET Framework.

However, no matter how easy Windows Forms makes building your user interface,
there are still numerous design challenges you will need to solve when building your
smart client applications. What is the right deployment model for your application?
How do you enable offline processing? What about data security? How do you keep
the application responsive to the user when connecting over low bandwidth? What
are the things you need to do to build an application that meets your users’
performance expectations? The list goes on.

If you don’t have a clear understanding of what these challenges are and what you
need to do to address them early in your development cycle, trying to retrofit
solutions later can be costly and painful. Smart Client Architecture and Design Guide
helps you to figure out what the design challenges are and guides you toward the
right solutions for your project. This is exactly the kind of information customers
have been asking us for, so I’m excited to see this guide published.

Have fun building client applications again!

Mark Boulter
PM Technical Lead

Mark Boulter is a senior PM on the .NET Client team at Microsoft. Mark has worked on
Windows Forms and related class libraries since joining Microsoft. Before joining Microsoft,
Mark worked as a consultant for ParcPlace Systems in the UK helping customers build client-
server and data analysis systems in Smalltalk. Prior to that, Mark spent more years than he is
willing to admit at IBM in the UK working on a variety of projects including large scale client
server systems, a CASE tool, a workflow engine, and order management systems. Mark's
interests include listening to post punk industrial new wave and blues, reading pretty much
anything he picks up, and herding cats.

1
Introduction

Welcome to the Smart Client Architecture and Design Guide. Smart client applications
are a powerful alternative to thin client applications. They can provide users with
a rich and responsive user interface, the ability to work offline, and a way to take
advantage of local hardware and software resources. In addition, they can be
designed to run on a broad spectrum of client devices, including desktop PCs,
Tablet PCs, and handheld mobile devices such as Pocket PCs and Smartphones.
Smart clients give users access to information and remote services within a powerful
and intuitive client environment, and are an effective solution for flexible user-
oriented applications and for increasing user productivity and satisfaction.

Smart client applications can be designed to combine the traditional benefits of a
rich client application with the manageability benefits of a thin client application.
However, to fully realize the benefits of a smart client application, you need to
consider a number of architectural and design issues. This guide describes the
architectural and design challenges you will face when designing and implementing
a smart client application. It provides guidance on how to overcome these challenges,
allowing you realize the benefits of a smart client application in as short a time as
possible.

Note: Additional technical resources on smart clients are available from the Smart Client Developer
Center at http://msdn.microsoft.com/smartclient/. The business value of smart clients is discussed
on the Microsoft .NET site at http://www.microsoft.com/net/smartclient/default.mspx.

What Is a Smart Client?
To fully understand how smart clients combine the benefits of rich clients and thin
clients, it is useful to examine the history and underlying principles behind the rich
and thin client application models, and review some of the advantages and
disadvantages associated with each.

http://msdn.microsoft.com/smartclient/
http://www.microsoft.com/net/smartclient/default.mspx

2 Smart Client Architecture and Design Guide

Rich Client Applications
In the mid-1990s, the number of rich client applications developed for the Microsoft®
Windows® operating system increased dramatically. These clients were designed to
take advantage of the local hardware resources and the features of the client
operating system platform.

Despite the impressive functionality of many of these applications, they have
limitations. Many of these applications are stand-alone and operate on the client
computer, with little or no awareness of the environment in which they operate.
This environment includes the other computers and any services on the network,
as well as any other applications on the user’s computer. Very often, integration
between applications is limited to using the cut or copy and paste features provided
by Windows to transfer small amounts of data between applications.

There are technologies to help increase the connectivity of rich client applications.
For example, two-tier applications allow multiple users to access common data
residing on the network, and DCOM allows applications to become more distributed.
(With DCOM, logic and state are no longer tied to the client computer, and instead
are encapsulated within objects that are then distributed across multiple computers.)
However, connected applications are considerably more complex to develop. As the
size and complexity of these distributed applications grows, any tight coupling
between client applications and the services they consume becomes increasingly
difficult to maintain.

While rich clients typically provide a high-quality, responsive user experience and
have good developer and platform support, they are very difficult to deploy and
maintain. As the complexity of the applications and the client platform increases,
so do the difficulties associated with deploying the application to the client computer
in a reliable and secure way. One application can easily break another application if
an incompatible shared component or library is deployed, a phenomenon known as
application fragility. New versions of the application are typically made available by
redeploying the entire application, which can increase an application fragility
problem.

Thin Client Applications
The Internet provides an alternative to the traditional rich client model that solves
many of the problems associated with application deployment and maintenance.
Thin client, browser-based applications are deployed and updated on a central Web
server; therefore, they remove the need to explicitly deploy and manage any part of
the application to the client computer.

 Chapter 1: Introduction 3

This model allows companies to very efficiently expose their applications to a large
and diverse external audience. Because thin clients have proven to be effective at
solving some of the deployment and manageability problems, they are now used
to provide access to many line-of-business (LOB) applications to users within an
organization, as well as access to externally facing applications to customers and
partners. This is despite the fact that the needs and expectations of these two types
of users are often radically different.

Thin client applications have some disadvantages. The browser must have a network
connection at all times. This means that mobile users have no access to applications
if they are disconnected, so they must reenter data when they return to the office.
Also, common application features such as drag-and-drop, undo-redo, and context-
sensitive help may be unavailable, which can reduce the usability of the application.

Because the vast majority of the application logic and state lives on the server,
thin clients make frequent requests back to the server for data and processing. The
browser must wait for a response before the user can continue to use the application;
therefore, the application will typically be much less responsive than an equivalent
rich client application. This problem is exacerbated in low bandwidth or high latency
conditions, and the resulting performance problems can lead to a significant
reduction in application usability and user efficiency. An LOB application that
requires heavy data entry and/or frequent navigation across multiple windows
can be particularly affected by this problem.

Smart Client Applications
Smart client applications can be designed to combine the benefits of a rich client
application with the deployment and manageability strengths of a thin client
application, although the precise nature of the balance between the two approaches
depends on the exact scenario.

Smart client applications often have very diverse requirements, and so vary greatly
in design and implementation. However, all smart clients share some or all of the
following characteristics:
● Make use of local resources
● Make use of network resources
● Support occasionally connected users
● Provide intelligent installation and update
● Provide client device flexibility

Many applications do not need all of these characteristics. As you design your smart
clients, you will need to carefully consider your application scenario and decide
which of these characteristics your smart client application requires. Incorporating
all of these characteristics into your application will require very careful planning
and design, and in many cases you will need significant implementation resources.

4 Smart Client Architecture and Design Guide

Note: The .NET Framework helps you to implement many of the characteristics of smart client
applications. Self-describing and tightly bound assemblies, along with support for isolated and
side-by-side installation of multiple versions of an application, help to reduce application deployment
and fragility problems associated with rich clients. The .NET Framework base class library provides
extensive support for interaction with Web services, and provides Windows Forms. By using the
common language runtime (CLR), you can use any .NET-supported language to develop your smart
clients.

Using Local Resources
A well-designed smart client application takes maximum advantage of the fact
that code and data are deployed on the client and executed and accessed locally.
It provides an application with a rich and responsive user interface and powerful
client-side processing capabilities. For example, it might enable the user to perform
complex data manipulation, visualization, searching, or sorting operations.

Smart clients can take advantage of client-side hardware resources (such as
telephones or barcode readers) and other software and applications. This makes
them well suited to solve problems that a thin client application cannot solve well,
such as point-of-sale applications. Smart clients can also take advantage of local
software, such as Microsoft Office applications, or any installed LOB application on
the client computer. Creating solutions that integrate with and coordinate multiple
LOB applications allows your users to work more efficiently, make better decisions,
and reduce data entry errors. Such solutions can also allow your application to be
more tightly integrated with the user’s working environment — for example by
having a custom or familiar user interface — which can lead to decreased training
costs.

Other client applications can be integrated or coordinated by the smart client
application to provide a coherent and efficient overall solution. These applications
should also be aware of the context in which the applications are being used, and
should adapt to that context to aid the user as much as possible; for example, by
preemptively caching appropriate and useful data according to the pattern of
usage or the role of the user.

Maximizing the use of and integrating local resources into your smart client
application enables your application to make better and more efficient use of the
hardware that is already available to you. Very often, processing power, memory,
and advanced graphical capabilities go unused. Using the resources on the client
computer can also reduce server-side hardware requirements.

 Chapter 1: Introduction 5

Using Network Resources
Smart clients can consume and use different services and data over the network. They
are an effective way to retrieve data from many different sources and can be designed
to analyze or aggregate the data, allowing the user to make more efficient and better
informed decisions. For example, a smart client could use a mapping service to
provide details on location and driving directions.

Smart client applications should be as connected as possible and should make use
of the resources and services that are available to them over the network. They
should not be stand-alone applications and should always form part of a larger
distributed solution. At a minimum, a smart client application should use centralized
services that help maintain the application and provide deployment and update
services.

The connected nature of smart client applications allows them to provide valuable
data aggregation, analysis, and transformation services. They can allow users to
collaborate on tasks in real time or over a period of time. In many cases, a smart client
application can provide portal-like capabilities to the user, allowing disparate data
and services to be coordinated and integrated into an overall solution.

For details about how to design your smart clients to make use of connected services,
see “Chapter 2, Getting Connected.”

Supporting Occasionally Connected Users
Smart clients can be designed to provide functionality to users who are occasionally
connected to the network, allowing the user to continue to work efficiently when
explicitly offline, in low bandwidth or high latency network conditions, or when
connectivity is intermittent. For mobile applications, smart clients can also optimize
network bandwidth, for example by batching requests to the server to make better
use of expensive connectivity.

Even when the client is connected to the network most of the time, smart client
applications can improve performance and usability by caching data and managing
the connection in an intelligent way. In a low bandwidth or high latency
environment, for example, a smart client application can manage the connection in
such a way that the usability and responsiveness of the application is not impaired
and the user can continue to work efficiently.

Being able to work while disconnected or only occasionally connected increases user
productivity and satisfaction. A smart client application should aim to provide as
much functionality as possible when offline.

For details about how to design your smart client applications to support
occasionally connected users, see Chapter 4, “Occasionally Connected Smart Clients.”

6 Smart Client Architecture and Design Guide

Providing Intelligent Installation and Update
Some of the biggest problems with traditional rich clients occur when the application
is deployed or updated. Many rich client applications have a large number of
complex installation requirements and may share code by registering components
and/or by installing DLLs in a common location, leading to application fragility and
update difficulties.

Smart client applications can be designed to manage their deployment and update
in a much more intelligent and flexible way than traditional rich client applications.
They can avoid these common problems, which can help to reduce your application
management costs.

There are a number of different ways to deploy smart clients. These include simply
copying files onto a local computer, downloading code automatically from a central
server using no-touch deployment, or deploying Windows Installer packages using
an enterprise push technology such as Microsoft Systems Management Server (SMS).
The method you choose will depend on your specific situation.

Smart client applications can update themselves automatically, either when they are
run or in the background. This capability allows them to be updated on a role-by-role
basis; updated in a staged manner, allowing applications to be rolled out to pilot
groups or a limited set of users; or updated according to an established schedule.

The .NET Framework allows you to strongly name your application components,
which means that the application can specify and run with the exact versions of
the components with which it was built and tested. The .NET Framework allows
applications to be isolated from each other so that installing one application will
not break another application, and multiple versions of the same application can be
deployed side by side. These features greatly simplify application deployment and
remove many of the application fragility problems that were associated with rich
client applications.

For more information about intelligent installation and updates, see Chapter 7,
“Deployment.”

Providing Client Device Flexibility
Smart clients can also provide a flexible and customizable client environment,
allowing the user to configure the application to support his or her preferred way of
working. Smart client applications are not restricted to desktop or laptop computers.
As connectivity and the power of small-scale devices increases, the need for useful
client applications that provide access to essential data and services on multiple
devices also increases. Together with the .NET Compact Framework, the .NET
Framework provides a common platform on which smart client applications can
be built.

 Chapter 1: Introduction 7

Smart clients can be designed to adapt to the host environment, providing
appropriate functionality for the device on which they are running. For example,
a smart client application designed to run on a Pocket PC should provide a user
interface that is tuned to using a stylus on a small screen area.

In many cases, you will need to design multiple versions of a smart client application,
each targeting a specific device type to take full advantage of the particular features
supported by the device. Because small-scale devices are typically limited in their
ability to deliver a full range of smart client application features, they may provide
mobile access to only a subset of the data and services that a fully featured smart
client application provides, or they may be used to collect and aggregate data when
the user is mobile. This data can then be analyzed or processed by a more fully
featured smart client application or by a server-side application.

An awareness of the capabilities and usage environment of the target device, whether
it is a desktop, laptop, tablet, or mobile device, and the ability to tailor the application
to provide the most appropriate functionality are essential features of many smart
client applications.

Note: This guide does not cover architectural and design details specific to the development of
smart client applications to be run on mobile devices, but many of the topics that are covered are
equally relevant whether the application is run on a desktop computer or another device.

Types of Smart Clients
Smart clients vary greatly in design and implementation, both in application
requirements and in the number of scenarios and environments in which they can
be used. Smart clients therefore can take many different forms and styles. These
forms can be divided into three broad categories according to the platform that the
smart client application is targeting:
● Windows smart client applications
● Office smart client applications
● Mobile smart client applications

It is common for a smart client application to target one or more of these platforms,
depending on the role of the user and the functionality required. Such flexibility is
one of the key strengths of smart client applications.

The remainder of this guide concentrates on issues that are common to all three types
of smart client applications, rather than providing a detailed explanation of issues
that affect each individual category. However, it is useful to briefly examine each type
in turn so that you can determine which style of application might be best for your
situation.

8 Smart Client Architecture and Design Guide

Windows Smart Client Applications
When you think of a rich client application, you may typically think of a desktop
application that uses available system resources and that provides a rich user
interface. Windows-targeted smart client applications represent an evolution of
traditional rich client applications, and provide specific and targeted functionality.

These kinds of applications typically use Windows Forms to provide a familiar
Windows-style user interface, where the application itself provides much of the
functionality and does not rely on another application to provide the main user
interface. Such smart clients can range from simple applications deployed over
HTTP to very sophisticated applications.

A Windows smart client application is suitable in situations where an application
needs to be deployed and accessed as a familiar desktop-type application. These
types of applications typically provide the majority of their functionality themselves
but can integrate with or coordinate other applications when appropriate. They
provide application functionality tuned to particular tasks to provide specific or
high-performance processing or graphical capabilities.

Windows smart client applications are typically most suitable for applications
that run on desktop, laptop, or tablet PCs. In addition, they generally provide
functionality that is not tightly associated with a particular document or
document type.

These kinds of Windows smart client applications can be used in a wide variety
of situations, for instance as LOB, financial, scientific, or collaborative applications.
Examples of these kinds of applications are Microsoft Money and the Microsoft
Outlook® messaging and collaboration client.

Office Smart Client Applications
Microsoft Office System 2003 provides you with a useful platform on which to build
smart client applications, especially in an enterprise setting. With an Office smart
client solution, you can integrate data sources, accessed through Web services, with
the features of Word 2003, Excel 2003, InfoPath 2003, or other Office applications to
develop smart client solutions.

Such Office smart client applications can become an integrated part of an
organization’s information management cycle, not just static containers for document
data. They can provide context-sensitive data as the user works within a document,
as well as workflow and task guidance, data analysis, collaboration, reporting, and
presentation features that turn data exposed by Web services into useful information.

 Chapter 1: Introduction 9

Microsoft Office supports XML and separates the data from other aspects of a
document so that it can be reused by other applications. Because application data in
Microsoft Office can be described by the same customer-defined XML schema across
multiple applications, developers can integrate that data into smart client
applications.

Microsoft Office 2003 has a number of key features and options for building smart
client solutions. These include:
● Smart tags. Smart tags give applications a way to provide users with context-

sensitive data pertaining to the contents of a document and allow them to easily
see and use relevant information when working within a document. For example,
smart tags can be used to provide account status for customers as those customers
are referenced within a document, or they can be used to provide order status
information as an order ID is typed. This contextualized feedback permits users
to make more informed decisions as they work.

● Smart documents. Smart documents provide a more powerful way for the user
to interact with documents and business Web services. Smart documents are a
new type of solution model for Word 2003 and Excel 2003 that have an underlying
XML structure and a customized task pane. The task pane can be used to display
contextual information, tasks, tools, next steps, and other relevant information to
the user. The user is able to initiate other actions and tasks by interacting with the
task pane, allowing comprehensive business solutions to be constructed.

● Microsoft Visual Studio® Tools for the Microsoft Office System. This suite of
tools enables developers to create managed code Office smart client applications
by using the Microsoft Visual Studio .NET 2003 development system. Developers
can separate document solutions from the underlying code (an alternative to
previous smart client models that contained Visual Basic for Applications macros
with custom logic). Using managed code with Microsoft Office provides
developers with more effective options for creating, deploying, and managing
updates for smart client solutions.

● Microsoft Office InfoPath™ 2003. InfoPath 2003 is an application that can gather
structured data from the user by using a form-like interface. InfoPath 2003
provides support for XML Web services, a form-based user interface, and support
for standard technologies such as WSDL and UDDI. InfoPath 2003 supports
limited offline use by allowing the user to interact with the form when offline
and then allowing the user to forward the form to a Web service when the user
is online.

This guide does not attempt to cover any of the issues specific to Office smart clients,
but most of the topics that are covered are entirely relevant to the smart client
applications discussed above.

10 Smart Client Architecture and Design Guide

Mobile Smart Client Applications
Mobile smart clients are applications that run on smart devices — Pocket PCs,
Smartphones, and other small form factor devices such as set-top boxes. These
applications are developed using the .NET Compact Framework, which is a subset
of the full .NET Framework.

The .NET Compact Framework has many of the features of the full .NET Framework,
supports XML, and consumes Web services. It is optimized for use on small form
factor devices, and it includes the Windows Forms designer for developing the user
interface.

By using the Visual Studio .NET Smart Device Projects, you can develop smart clients
that will run on the .NET Compact Framework. This approach allows you to develop,
test, and debug an application by using Visual Studio .NET on an emulator of the
small form factor device. The use of an emulator significantly speeds up development
and testing of these types of applications.

Mobile smart client applications are typically used to provide mobile access to
essential data and services, or to collect and aggregate data when the user is mobile.
Examples of these types of applications are insurance and financial data-gathering
applications, inventory management applications, and personal productivity
management applications.

This guide does not specifically focus on mobile smart client applications, although
many of the architectural issues and solutions that it discusses are relevant to smart
devices.

Choosing Between Smart Clients and Thin Clients
To choose the right application architecture for your situation, you must consider a
number of factors. To determine whether a smart client approach is the most suitable
for your application, carefully consider your current and future business application
needs. If your application is based on an unsuitable architecture, it may fail to meet
the requirements and expectations of the users and the business as a whole.
Changing the architecture later to meet new requirements or to take advantage
of new opportunities may be extremely expensive.

A thin client architecture is often the most appropriate if you need to make an
externally facing application available to a diverse external audience, while a smart
client architecture is often the most suitable for an internal application that needs
to integrate with or coordinate other client-side applications or hardware, or that is
required to work offline or provide specific high-performance functionality through
a responsive user interface.

 Chapter 1: Introduction 11

In reality these two approaches overlap to a great extent, and each has distinct
advantages and disadvantages. You will only be able to choose the right approach
after you carefully consider your requirements and understand how each approach
would apply in your situation. Use Table 1.1 to help you choose between a smart
client and thin client architecture.

Table 1.1: Features of Thin Clients and Smart Clients

Feature Thin client Smart client

Provides a rich user interface Yes, but difficult to develop,
test, and debug. Generally ties
the application to a single
browser.

Yes. Easier to develop, test,
and debug.

Can take advantage of
hardware resources on local
computer

Yes, but only through COM
components.

Yes

Can interact with other local
applications

No Yes

Can be multithreaded No Yes

Can function offline No Yes

Can perform well in low
bandwidth and high latency
environments

No Yes

Easy to deploy Yes Varies. Difficulty depends on
application requirements.

Low maintenance and change
management costs

Yes Varies. Costs depend on
application requirements.

Can be deployed to a wide
variety of clients with varying
capabilities

Yes, although more complex
thin clients may require a
single browser.

Yes. Can be deployed on any
platform that supports the
.NET Framework (including the
.NET Compact Framework).

Smart Client Architectural Challenges
The architectural challenges of smart clients differ from those of thin clients, and you
will need to account for them in your application design. The benefits of smart client
applications are significant, but you can realize them only if you address these
challenges appropriately.

12 Smart Client Architecture and Design Guide

Smart clients allow data and logic to be distributed to the client computer, whereas
thin clients tend to keep the data and logic centralized on the Web server and other
back-end services. Although the smart client approach allows you to make the
application more efficient, with no round trips to the server to determine next steps,
you need to consider that the application and its data are now more widely
distributed than with thin client applications, and modify your design accordingly.

If you are implementing business rules on the client, you will need to update those
rules as required, without updating the entire application. This may mean that you
use differing mechanisms for updating the application and updating business rules
within the application.

By caching data on the client, you can significantly improve the performance
and usability of an application, but you must ensure that the data is refreshed
appropriately and that stale data is not used. Because many users can access and
use the same data, you must also consider the effects of data concurrency. Your
application must be able to handle data conflicts or reconciliation issues that arise
because the application is now more widely distributed and can operate while offline.
Chapter 3, “Handling Data,” covers these issues in depth.

The .NET Framework provides a great deal of flexibility in how your smart
client applications can be hosted. Applications can be run as traditional desktop
applications or can be hosted within Office or Microsoft Internet Explorer. Many
combinations are possible. For instance, a Windows Forms application can host
Internet Explorer or Office components, and any host can subsume any other.

You can factor volatile application logic (for example, business rules governing
volume order discounts) into assemblies that are downloaded on demand over HTTP.
Doing so obviates the need to deploy new versions of the client application as new
application logic is developed. You can use the same model for additional (or
infrequently used) application features, so that initial application size is kept to
a minimum, and additional features are installed on an as-needed basis.

You may choose to deploy your smart clients as composite applications, where many
applications combine to form a coherent solution. Such solutions can be formed by
coupling desktop applications, or by providing a generic shell application that houses
multiple lightweight applications that together form the solution.

 Chapter 1: Introduction 13

Composite applications are particularly useful in situations where users have to
access many applications to do their work. For example, customer service agents in
call centers typically have to work with many LOB applications, including desktop,
browser-based, and terminal-based applications. All such LOB applications can be
hosted within a generic Windows Forms application that provides integration
between them, greatly simplifying the user’s job and, most importantly, reducing
the time spent on a particular call. By providing a generic shell to host these LOB
applications, common infrastructure features, such as security, deployment, window
management, application integration, auditing, and so on, can be developed, tested,
and reused across different solutions, freeing the developers of the LOB applications
to focus on business functionality.

The advent of service-oriented architectures means that you can design smart clients
to make use of network services. All such services are provided in an industry-
standard way, which improves interoperability, developer tool support, and the
ease with which new features can be built into the smart client application.

Scope of This Guide
This guide is focused on the architectural and design issues surrounding smart
client applications built on the Microsoft .NET technologies. It assumes that you are
building your smart client applications using the Microsoft .NET Framework and are
using Microsoft .NET Windows Forms to build any user interface.

The guide does not cover implementation issues in depth. In particular, the details
of implementing a smart client application on Microsoft Office 2003 or on a mobile
device are not covered, although many of the issues covered in this guide are relevant
to smart client applications — whether they are stand-alone Windows Forms, Office,
or mobile device applications.

How to Use This Guide
This guide is designed to be used in one of two ways. First, the guide is structured to
provide a fairly comprehensive overview of the architectural and design issues you
might face when building a smart client application. Reading the guide from start to
finish will give you the fullest understanding of the issues you might face and how to
overcome them.

Alternatively, if you prefer to delve into the issues surrounding a specific topic, you
can read chapters individually for self-contained discussions of the relevant issues.

14 Smart Client Architecture and Design Guide

Who Should Read This Guide
This guide is intended for software architects and developers who are developing
smart client applications built on Microsoft .NET technologies.

Prerequisites
To benefit fully from this guide, you should have an understanding of the following
technologies and concepts:
● The Microsoft .NET Framework
● Microsoft Visual Studio .NET 2003 development tool
● Microsoft® Visual C#® development tool
● Extensible Markup Language (XML)
● Message Queuing (MSMQ)
● Multithreading
● Relational database operation
● Distributed application design and architecture

Note: For more information about distributed application design and architecture,
see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7
/html/vxoriDesignConsiderationsForDistributedApplications.asp and
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7
/html/vxoriplanningdistributedapplications.asp.

Chapter Outlines
This guide consists of the following chapters, each of which deals with a specific
issue relevant to smart clients. Each chapter is designed to be read, in whole or in
part, according to your needs.

Chapter 1: Introduction
This chapter gives a high-level description of smart client applications and describes
some of their basic properties and benefits. It then discusses some of the high-level
architectural issues and provides guidance to help you determine if a smart client
architecture is right for your application.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxoriDesignConsiderationsForDistributedApplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxoriDesignConsiderationsForDistributedApplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxoriplanningdistributedapplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxoriplanningdistributedapplications.asp

 Chapter 1: Introduction 15

Chapter 2: Handling Data
In smart clients, application data is available on the client. This data needs to be
managed appropriately to make sure that it is kept valid, consistent, and secure. If
the data is provided by a server application, the smart client application may cache
the data to improve performance or to enable offline usage. If your smart client
application provides the ability to modify data locally, the client changes have to be
synchronized with the server-side application at a later time. This chapter examines
the various considerations for handling data on the client, including data caching,
data concurrency, and the use of datasets and Windows Forms data binding.

Chapter 3: Getting Connected
Smart client applications often form one part of a larger distributed application, so
they are frequently connected to a network and interact with network resources such
as Web services, along with components or processes on the client computer itself.
This chapter describes a number of ways in which your application can connect to
and use these resources, and discusses the strengths and weaknesses of each.

Chapter 4: Occasionally Connected Smart Clients
This chapter contains a discussion of the issues you might face when designing and
building smart client applications that are occasionally connected to the network.
The chapter covers the concept of connectivity, describes the two main approaches
to implementing offline capabilities, and discusses some of the things you need to
consider to make your application available when offline.

Chapter 5: Security Considerations
This chapter covers the issues of smart client security. Smart clients distribute logic
and data to the client computer; therefore, the security concerns are different from
those associated with thin a client application, where data and logic are confined
more to the server. This chapter discusses data security, authentication, authorization,
and the role of code access security within a smart client application.

Chapter 6: Using Multiple Threads
This chapter discusses the issues surrounding the use of multiple threads in a smart
client application. To maximize the responsiveness of your smart client applications,
you need to carefully consider how and when to use multiple threads. Threads can
significantly improve the usability and performance of your application, but they
require very careful consideration when you determine how they will interact with
the user interface.

16 Smart Client Architecture and Design Guide

Chapter 7: Deploying and Updating Smart Client Applications
Smart clients do not suffer from the deployment and update problems traditionally
associated with rich client applications. Features provided by the .NET Framework
and the Windows platform help you to avoid many problems associated with
traditional rich client deployment. This chapter describes how to best use these
features and how to choose between the deployment and update mechanisms
available.

Chapter 8: Smart Client Application Performance
This chapter examines techniques that you can use as you architect and design your
smart client applications to ensure that you optimize their performance. It looks at a
number of tools and techniques you can use to identify performance problems in
your smart client applications.

Summary
Thin clients and smart clients can each be used to provide LOB applications to your
organization. However, each type of client has its advantages and disadvantages.
When designing your application, you will need to carefully consider the specifics of
your situation before you can determine which is more appropriate. This chapter has
explained how smart clients evolved and the features that are associated with them.
You can now use the rest of this guide to help you determine how to design and
implement smart clients in your own organization.

More Information
The following resources provide more information about patterns & practices, smart
clients, and other application blocks that you can use to find specific guidance.
● patterns & practices Web site at http://www.microsoft.com/resources/practices

/default.mspx
● Patterns and Practices Library at http://www.microsoft.com/resources/practices

/completelist.asp
● Overview of Smart Client Applications in the Microsoft Office System on MSDN®

at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_ip2003_ta/html
/odc_IPOffice2003SmartClient.asp

● Application Architecture for .NET: Designing Applications and Services on MSDN
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/distapp.asp

http://www.microsoft.com/resources/practices/default.mspx
http://www.microsoft.com/resources/practices/default.mspx
http://www.microsoft.com/resources/practices/completelist.asp
http://www.microsoft.com/resources/practices/completelist.asp
http://www.microsoft.com/resources/practices/completelist.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_ip2003_ta/html/odc_IPOffice2003SmartClient.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_ip2003_ta/html/odc_IPOffice2003SmartClient.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

2
Handling Data

In smart clients, application data is available on the client. If your smart clients are
to function effectively, it is essential that this data be managed appropriately to make
sure that it is kept valid, consistent, and secure.

Application data can be made available to the client by a server-side application
(for example, through a Web service), or the application can use its own local data.
If the data is provided by a server application, the smart client application may cache
the data to improve performance or to enable offline usage. In this case, you need to
decide how the client application should handle data that is out of date with respect
to the server.

If your smart client application provides the ability to modify data locally, the client
changes have to be synchronized with the server-side application at a later time. In
this case, you have to decide how the client application can handle data conflicts and
how to keep track of the changes that need to be sent to the server.

You need to carefully consider these and a number of other issues when designing
your smart client application. This chapter examines the various considerations for
handling data on the client, including:
● Types of data
● Caching data
● Data concurrency
● Using ADO.NET datasets to manage data
● Windows Forms data binding

A number of other issues related to handling data are not discussed in this chapter.
In particular, data handling security issues are discussed in Chapter 5, “Security
Considerations,” and offline considerations are discussed in Chapter 4, “Occasionally
Connected Smart Clients.”

18 Smart Client Architecture and Design Guide

Types of Data
Smart clients generally have to handle two categories of data:
● Read-only reference data
● Transient data

Typically, these types of data need to be handled in different ways, so it is useful to
examine each of them in more detail.

Read-Only Reference Data
Read-only reference data is data that is not changed by the client and that is used by
the client for reference purposes. Therefore, from the client’s point of view, the data
is read-only data, and the client performs no update, insert, or delete operations on it.
Read-only reference data is readily cached on the client. Reference data has a number
of uses in a smart client application, including:
● Providing static reference or lookup data. Examples include product information,

price lists, shipping options, and prices.
● Supporting data validation, allowing data entered by the user to be checked for

correctness. An example is checking entered dates against a delivery schedule.
● Helping to communicate with remote services. An example is converting a

user selection to a product ID locally and then sending the information to a Web
service.

● Presenting data. Examples include presenting Help text or user interface labels.

By storing and using reference data on the client, you can reduce the amount of
data that needs to travel from client to server, improve the performance of your
application, help enable offline capabilities, and provide early data validation,
which increases the usability of your application.

Although read-only reference data cannot be changed by the client, it can be changed
on the server (for example, by an administrator or supervisor). You need to determine
a strategy for updating the client when changes to the data occur. Such a strategy
could involve pushing changes out to the client when a change occurs or pulling
changes from the server at certain time intervals or prior to certain actions on the
client. However, because the data is read-only at the client, you do not need to keep
track of client-side changes. This simplifies the way in which read-only reference data
needs to be handled.

 Chapter 2: Handling Data 19

Transient Data
Transient data can be changed on the client as well as the server. Generally, transient
data changes as a direct or indirect result of user input and manipulation. In this case,
changes that are made on either the client or server need to be synchronized at some
point. This type of data has a number of uses in a smart client, including:
● Adding new information. Examples include adding banking transactions or

customer details.
● Modifying existing information. An example is updating customer details.
● Deleting existing information. An example is removing a customer from a

database.

One of the most challenging aspects of dealing with transient data on smart clients is
that it can generally be modified on multiple clients at the same time. This problem is
exacerbated when the data is very volatile, because changes are more likely to conflict
with one another.

You need to keep track of any client-side changes that you make to transient data.
Until the data is synchronized with the server and any conflicts have been resolved,
you should not consider transient data to be confirmed. You should be very careful
not to rely on unconfirmed data to make important decisions or use it as the basis for
other local changes without carefully considering how data consistency can be
guaranteed even in the event of a synchronization failure.

For more details about the issues surrounding handling data when offline and how to
handle data synchronization, see Chapter 4, “Occasionally Connected Smart Clients.”

Caching Data
Smart clients often need to cache data locally, whether it is read-only reference data
or transient data. Caching data has the potential to improve performance in your
application and provide the data necessary to work offline. However, you need to
carefully consider which data is cached on the client, how that data is to be managed,
and the context in which that data can be used.

To enable data caching, your smart client application should implement some form
of caching infrastructure that can handle the data caching details transparently. Your
caching infrastructure should include one or both of the following caching
mechanisms:
● Short-term data caching. Caching data in memory is good for performance but is

not persistent, so you may need to pull data from the source when the application
is re-run. Doing so may prevent your application from operating when offline.

20 Smart Client Architecture and Design Guide

● Long-term data caching. Caching data in a persistent medium, such as isolated
storage or the local file system, allows you to use the application when there is
no connectivity to the server. You may choose to combine long-term storage with
short-term storage to improve performance.

Regardless of the caching mechanisms you adopt, you should ensure that only
data to which the user has access is made available to the client. Also, sensitive
data cached on the client requires careful handling to ensure that it is kept secure.
Therefore, you may need to encrypt the data as it is transferred to the client and as
it is stored on the client. For more information, see “Handling Sensitive Data” in
Chapter 5, “Security Considerations.”

As you design your smart client to support data caching, you should consider
providing a mechanism for your client to request fresh data, regardless of the state
of the cache. This means that you can be sure that the application is ready to perform
new transactions without using stale data. You may also configure your client to
pre-fetch data so that it can mitigate the risk of being offline when cached data
expires.

Wherever possible, you should associate some form of metadata with the data to
enable the client to manage the data in an intelligent way. Such metadata can be used
to specify the data’s identity and any constraints or desired behaviors associated with
the data. Your client-side caching infrastructure should consume this metadata and
use it to handle the cached data appropriately.

All data that is cached on the client should be uniquely identifiable (for example,
through a version number or date stamp), so that it can be properly identified when
determining whether it needs to be updated. Your caching infrastructure is then able
to ask the server whether the data that it has is currently valid and determine if any
updates are required.

Metadata can also be used to specify constraints or behaviors that relate to the usage
and handling of the cached data. Examples include:
● Temporal constraints. These constraints specify the time or date range in which

the cached data can be used. When the data becomes stale or expires, it can be
dropped from the cache or automatically refreshed by obtaining the latest data
from the server. In some cases, it may be appropriate to let the client use out-of-
date reference data and map it to up-to-date data when it is synchronized with
the server.

● Geographic constraints. Some data may be appropriate only for a particular
region. For example, you may have different price lists for different locations. Your
caching infrastructure can be used to access and store data on a per-location basis.

● Security requirements. Data that is specifically intended for a particular user can
be encrypted to ensure that only the appropriate user can access it. In this case, the
data is provided already encrypted, and the user has to provide the credentials to
the caching infrastructure to allow the data to be decrypted.

 Chapter 2: Handling Data 21

● Business rules. You may have business rules associated with your cached data
that dictate how it should be used. For example, your caching infrastructure may
take into consideration the role of the user to determine what data is provided to
him or her and how it is handled.

The metadata associated with the data enables your caching infrastructure to handle
the data appropriately so that your application does not have to be concerned with
data caching issues or implementation details. You can pass the metadata associated
with the reference data within the data itself, or you can use an out-of-band
mechanism. The exact mechanism used to transport the metadata to the client
depends on how your application communicates with the network services. When
using Web services, using SOAP headers to communicate the metadata to the client
is a good solution.

The differences between read-only reference data and transient data sometimes mean
that you need to use two caches, one for reference data and one for transient data.
Reference data is read-only on the client and does not need to be synchronized back
with the server, but it does need to be refreshed occasionally to reflect any changes
and updates made on the server.

Transient data can be changed on the client as well as the server. With data
in the cache being updated sometimes on the client, sometimes on the server,
and sometimes on both, any changes made to the data on the client need to be
synchronized with the server at some point. If the data has changed on the server
in the meantime, a data conflict occurs and needs to be handled appropriately.

To help ensure that data consistency is maintained, and to avoid using data
inappropriately, you should be careful to keep track of any changes that you make
to transient data on the client. Such changes are uncommitted or tentative until they
are successfully synchronized or confirmed with the server.

You should design your smart client application so that it can differentiate between
data that has been successfully synchronized with the server and data that is still
tentative. This distinction helps your application detect and handle data conflicts
more easily. Also, you may want to restrict the application or the user from making
important decisions or initiating important actions based on tentative data. Such
data should not be relied on until it has been synchronized with the server. By
using an appropriate caching infrastructure, you can keep track of tentative and
confirmed data.

22 Smart Client Architecture and Design Guide

The Caching Application Block
The Caching Application Block is a Microsoft® .NET Framework extension that allows
developers to easily cache data from service providers. It was built and designed to
encapsulate Microsoft’s recommended practices for caching in .NET Framework
applications as described in Caching Architecture Guide for .NET Framework Applications
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/CachingArch.asp.

The overall architecture of the caching block is shown in Figure 2.1.

RetrieveCache

Client Service
Agent

CacheManager LoadCache

ClearCache

Data
Store

Figure 2.1
Caching block workflow

The caching workflow consists of the following steps:
1. A client or service agent makes a request to the CacheManager for cached

data items.
2. If the item is already cached, the CacheManager retrieves the item from storage

and returns it as a CacheItem object. If the item is not already cached, the client
is notified.

3. After retrieving noncached data from a service provider, the client sends the data
to the CacheManager. The CacheManager adds a signature (that is, metadata),
such as a key, expiration, or priority, to the item and loads it into the cache.

4. The CacheService monitors the lifetime of CacheItems. When a CacheItem
expires, the CacheService removes it and, optionally, calls a callback delegate.

5. The CacheService can also flush all items from the cache.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/CachingArch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/CachingArch.asp

 Chapter 2: Handling Data 23

The caching block offers a variety of caching expiration options, which are described
in Table 2.1.

Table 2.1: Caching Block Expiration Options

Class Description

AbsoluteTime Use to set the absolute time for an expiration.

ExtendedFormatTime Use to set an expiration based on an expression (such as every minute
or every Monday).

FileDependency Use to set an expiration based on whether a file is changed.

SlidingTime Use to set the lifetime for an item by specifying an expiration based on
when an item is last accessed.

The following storage mechanisms are available for the caching block:
● Memory-mapped file (MMF). MMFs are best suited for a client-based,

high-performance caching scenario. You can use MMFs to develop a cache that
can be shared across multiple application domains and processes within the same
computer. The .NET Framework does not support MMFs, so any implementation
of an MMF cache runs as unmanaged code and does not benefit from any .NET
Framework features, including memory management features (such as garbage
collection) and security features (such as code access security).

● Singleton object. A .NET remoting singleton object can be used to cache data
that can be shared across processes in one or several computers. This is done
by implementing a caching service using a singleton object that serves multiple
clients through .NET remoting. Singleton caching is simple to implement, but it
lacks the performance and scalability provided by solutions based on Microsoft
SQL Server™.

● Microsoft SQL Server 2000 database. SQL Server 2000 storage is best suited to
an application that requires high durability or when you need to cache a very
large amount of data. Because the cache service needs to access SQL Server over a
network and the data is retrieved using database queries, data access is relatively
slow.

● Microsoft SQL Server Desktop Engine (MSDE). MSDE is a lightweight database
alternative to SQL Server 2000. It provides reliability and security features but
has a smaller client footprint than SQL Server, so it requires less setup and
configuration. Because MSDE supports SQL, developers also gain much of the
power of a database. You can migrate an MSDE database to a SQL Server database
if necessary.

24 Smart Client Architecture and Design Guide

Data Concurrency
As mentioned earlier, one problem with using smart clients is that changes to the data
held on the server can occur before any client-side changes are synchronized with the
server. You need a mechanism to ensure that when the data is synchronized, any data
conflicts are handled appropriately and the resultant data is consistent and correct.
The ability for data to be updated by more than one client is known as data
concurrency.

There are two approaches that you could use to handle data concurrency:
● Pessimistic concurrency. Pessimistic concurrency allows one client to maintain a

lock over the data to prevent any other clients from modifying the data until the
client’s own changes are complete. In such cases, if another client attempts to
modify the data, the attempt fails or is blocked until the lock’s owner releases
the lock.
Pessimistic concurrency can be problematic, because a single user or client may
hold on to a lock for a significant period of time, possibly inadvertently. Therefore,
the lock could prevent important resources, such as database rows or files, from
being released in a timely manner, which can seriously affect the scalability and
usability of the application. However, pessimistic concurrency may be appropriate
when you need to have complete control over changes made to important
resources. Note that it cannot be used if your clients are to work offline, because
they are not able to put a lock on data.

● Optimistic concurrency. Optimistic concurrency does not lock the data .To decide
whether an update is actually required, the original data can be sent along with
the update request and the changed data. The original data is then checked against
the current data to see if it has been updated in the meantime. If the original data
and the current data match, the update is executed; otherwise, the request is
denied, producing an optimistic failure. To optimize this process, you can use a
time stamp or an update counter in the data instead of sending the original data,
and in this case only the time stamp or counter needs to be checked.
Optimistic concurrency provides a good mechanism for updating master data
that does not change very often, such as a customer’s phone number or address.
Optimistic concurrency allows everyone to read the data, and in situations where
updates are less likely than read operations, the risk of an optimistic failure may
be acceptable. Optimistic concurrency may not be suitable in situations where the
data is changed often and where the optimistic updates are likely to fail often.

 Chapter 2: Handling Data 25

In most smart client scenarios, including those in which clients are to work offline,
optimistic concurrency is the correct approach because it allows multiple clients to
work on data at the same time without unnecessarily locking data and affecting all
other clients.

For more information about optimistic and pessimistic concurrency,
see “Optimistic Concurrency” in the .NET Framework Developer's Guide at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconoptimisticconcurrency.asp.

Using ADO.NET DataSets to Manage Data
A DataSet is an object that represents one or more relational database tables. Datasets
store data in a disconnected cache. The structure of a dataset is similar to that of a
relational database: It exposes a hierarchical object model of tables, rows, and
columns. In addition, it contains constraints and relationships defined for the dataset.

An ADO.NET DataSet contains a collection of zero or more tables represented
by DataTable objects. A DataTable is defined in the System.Data namespace and
represents a single table of memory-resident data. It contains a collection of columns
represented by a DataColumnCollection and constraints represented by a
ConstraintCollection, which together define the schema of the table. A DataTable
also contains a collection of rows represented by the DataRowCollection, which
contains the data in the table. Along with its current state, a DataRow retains both
its current and original versions to identify changes to the values stored in the row.

Datasets can be strongly typed or untyped. A typed DataSet inherits from the
DataSet base class but adds strong typed language functionality to the DataSet,
allowing users to access content in a more strongly typed programmatic manner.
Either type can be used when building applications. However, the Microsoft Visual
Studio® development system has more support for typed datasets, and they make
programming with the dataset easier and less error prone.

Datasets are particularly useful in a smart client environment, because they offer
functionality that helps clients to work with data while offline. They can keep track
of local changes made to the data, which helps to synchronize the data with the
server and reconcile data conflicts, and they can be used to merge data from different
sources.

For more information about working with datasets, see “Introduction to Datasets” in
Visual Basic and Visual C# Concepts at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/vbcon/html/vbconDataSets.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconoptimisticconcurrency.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconoptimisticconcurrency.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconDataSets.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconDataSets.asp

26 Smart Client Architecture and Design Guide

Merging Data with Datasets
Datasets have the ability to merge the contents of DataSet, DataTable, or DataRow
objects into existing datasets. This functionality is particularly useful for keeping
track of changes on the client and merging with updated content from the server.
Figure 2.2 shows a smart client requesting an update from the Web service, and the
new data being returned as a data transfer object (DTO). A DTO is an enterprise
pattern that allows you to package all the data required to communicate with a Web
service into one object. Using a DTO often means that you can make a single call to a
Web service rather than multiple calls.

Client Web Service

3 Create DataSet from DTO
Merge with local DataSet

1 Request update

2 DTO

Figure 2.2
Merging data on the client by using datasets

In this example, when the DTO is returned to the client, the DTO is used to create a
new dataset locally on the client.

Note: After a merge operation, ADO.NET does not automatically change the row state from modified
to unchanged. Therefore, after merging the new dataset with the local client dataset, you need to
invoke the AccceptChanges method on your dataset to reset the RowState property to unchanged.

For more information about using datasets, see “Merging DataSet Contents” in the
.NET Framework Developer's Guide at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconmergingdatasetcontents.asp.

Increasing the Performance of Datasets
Datasets can often contain a large amount of data, which, if passed over the network,
can lead to performance problems. Fortunately, with ADO.NET DataSets, you can
use the GetChanges method on your datasets to ensure that only the data that is
changed in a dataset is communicated between the client and the server, packaging
the data in a DTO. Then the data is merged into the dataset at its destination.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconmergingdatasetcontents.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconmergingdatasetcontents.asp

 Chapter 2: Handling Data 27

Figure 2.3 shows a smart client that makes changes to local data and uses the
GetChanges method on a dataset to submit only changed data to the server. The data
is transferred to a DTO for performance reasons.

Client Web Service

1 DataSet used to track
local changes made to

data. Ask DataSet for changes
and send to Web Service.

3 Submit changes
to database

2 DTO

Figure 2.3
Using a DTO to improve performance

The GetChanges method can be used for smart client applications that need to go
offline. When an application is again online, you can use the GetChanges method to
determine what information has changed and then generate a DTO to communicate
with the Web service to ensure that the changes are submitted to a database.

Windows Forms Data Binding
Windows Forms data binding enables you to connect the user interface of your
application to the application’s underlying data. Windows Forms data binding
supports bidirectional binding so you can bind a data structure to the user interface,
display the current data values to the user, allow the user to edit the data, and then
update the underlying data automatically, using the values entered by the user.

You can use Windows Forms data binding to bind virtually any data structure or
object to any property of the user interface controls. You can bind a single item of
data to a single property of a control, or you can bind more complex data (for
example, a collection of data items or a database table) to the control so it can
display all of the data in a data grid or list box.

Note: You can bind any object that supports one or more public properties. You can bind only to
public properties of your classes and not to public members.

Windows Forms data binding allows you to provide a flexible, data-driven user
interface with your applications. You can use data binding to provide customizable
control over the look and feel of your user interface (for example, by binding to
control properties such as the background or foreground color, size, image, or icon).

28 Smart Client Architecture and Design Guide

Data binding has many uses. For example, it can be used to:
● Display read-only data to users.
● Allow users to update data from the user interface.
● Provide master-detail views on data.
● Allow users to explore complex related data items.
● Provide lookup table functionality, allowing the user interface to connect

user-friendly display names.

This section examines some features of data binding and discusses some of the data
binding features that you frequently need to implement in a smart client application.

For in-depth information about data binding, see “Windows Forms Data Binding and
Objects” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadvnet/html
/vbnet02252003.asp.

Windows Forms Data Binding Architecture
Windows Forms data binding provides a flexible infrastructure to bidirectionally
connect data to the user the interface. Figure 2.4 shows a schematic representation
of the overall architecture of Windows Forms data binding.

Data Table

Binding
Context

Windows Form

Currency
Manager

Currency
Manager

Currency
Manager

Collection

Binding Data Item

Array

Form1

Figure 2.4
Architecture of Windows Forms data binding

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadvnet/html/vbnet02252003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadvnet/html/vbnet02252003.asp

 Chapter 2: Handling Data 29

Windows Forms data binding uses the following objects:
● Data source. Data sources are the objects that contain the data to be bound to

the user interface. Data providers can be any object that has public properties,
an array or a collection that supports the IList interface or an instance of a complex
data class (for example, DataSet or DataTable).

● CurrencyManager. The CurrencyManager object keeps track of the current
position of the data within an array, collection, or table that is bound to the user
interface. The CurrencyManager allows you to bind a collection of data to the user
interface and to navigate through that data, updating the user interface to reflect
the currently selected item within the collection.

● PropertyManager. The PropertyManager object is responsible for maintaining the
current property of an object that is bound to a control. Both the PropertyManager
and CurrencyManager classes inherit from a common base class,
BindingManagerBase. All data providers bound to a control to have an
associated CurrencyManager or PropertyManager object.

● BindingContext. Each Windows Form has a default BindingContext object
that keeps track of all of the CurrencyManager and PropertyManager objects
on the form. The BindingContext object allows you to easily retrieve the
CurrencyManager or PropertyManager object for a specific data source. You
can assign a specific BindingContext object to a container control (such as a
GroupBox, Panel, or TabControl) that contains data-bound controls. Doing so
allows each part of your form to be managed by its own CurrencyManager or
PropertyManager objects.

● Binding. The Binding objects are used to create and maintain a simple binding
between a single property of a control and either the property of another object
or the property of the current object in a list of objects.

30 Smart Client Architecture and Design Guide

Binding Data to Windows Forms Controls
There are a number of properties and methods that you can use to bind to specific
Windows Forms controls. Table 2.2 shows some of the more important ones.

Table 2.2: Properties and Methods for Binding to Windows Forms Controls

Property or method Windows Forms control Description

DataSource property ListControls (for example,
ListBox or Combo Box),

DataGrid control

Allows you to specify the data provider
object to be bound to the user interface
control.

DisplayMember property ListControls Allows you to specify the member of the
data provider to be displayed to the user.

ValueMember property ListControls Allows you to specify the value associated
with the displayed value for the internal
use of your application.

DataMember property DataGrid control If the data source contains more than one
source of data (for example, if you specify
a DataSet that contains multiple tables),
use the DataMember property to specify
the one to be bound to the grid. (See note
following table.)

SetDataBinding method DataGrid control Allows you to reset the DataSource
method at run time.

Note: If the DataSource is a DataTable, DataView, collection, or array, setting the DataMember
property is not required.

You can also use the DataBindings collection property available on all Windows
Forms control objects to add Binding objects explicitly to any control object. Binding
objects are used to bind a single property on the control to a single data member of
the data provider. The following code example adds a binding between the Text
property of a text box control to the customer name in the customers table of a
data set.

textBox1.DataBindings.Add(
 new Binding("Text", dataset, "customers.customerName"));

 Chapter 2: Handling Data 31

When you construct a Binding instance with the Binding constructor, you
must specify the name of the control property to bind to, the data source, and the
navigation path that resolves to a list or property in the data source. The navigation
path can be an empty string, a single property name, or a period-delimited hierarchy
of names. You can use a hierarchical navigation path to navigate through data tables
and relations in a DataSet object, or over an object model where an object’s properties
return instances to other objects. If you set the navigation path to an empty string, the
ToString method is called on the underlying data source object.

Note: If a property is read-only (that is, the object does not support a set operation for that property),
data binding does not by default make the bound Windows Forms control read-only. This can lead to
confusion for the user, because the user can edit the value in the user interface, but the value in the
bound object will not be updated. Therefore, make sure the read-only flags are set to true for all
Windows Forms controls that are bound to read-only properties.

Binding Controls to DataSets
It is often useful to bind controls to datasets. Doing so allows you to display the
dataset data in a data grid, and it allows the user to easily update the data. You can
bind a data grid control to a DataSet using the following code.

DataSet newDataSet = webServiceProxy.GetDataSet();
this.dataGrid.SetDataBinding(newDataSet, "tableName");

Sometimes you need to replace the contents of your dataset after all of the bindings
with your controls have already been established. However, when you replace
existing sets with new ones, the bindings all remain with the old data set.

Rather than manually recreating the data bindings with the new data source, you can
use the Merge method of the DataSet class to bring the data from the new data set
into the existing one, as shown in the following code example.

DataSet newDataSet = myService.GetDataSet();
this.dataSet1.Clear();
this.dataSet1.Merge(newDataSet);

Note: To avoid threading issues, you should only update bound data objects on the UI thread. For
more information, see Chapter 6, “Using Multiple Threads.”

32 Smart Client Architecture and Design Guide

Navigating Through a Collection of Data
If your data sources contain a collection of items, you can bind the data collection to
your Windows Forms controls and navigate through the collection of data one item at
a time. The user interface is automatically updated to reflect the current item in the
collection.

You can bind to any collection object that supports the IList interface. When you
bind to a collection of objects, you can allow the user to navigate through each item
in the collection, automatically updating the user interface for each item. Many of
the collection and complex data classes provided by the .NET Framework already
support the IList interface, so you can easily bind to arrays or complex data such
as data rows or data views. For example, any array object that is an instance of the
System.Array class implements the IList interface by default, and so can be bound
to the user interface. Many ADO.NET objects also support the IList interface, or a
derivative of it, allowing these objects to be easily bound too. For example, the
DataViewManager, DataSet, DataTable, DataView, and DataColumn classes all
support data binding in this way.

Data sources that implement the IList interface are managed by the
CurrencyManager object. This object maintains an index into the data collection
though its Position property. The index is used to ensure that all controls bound
to the data source read and write to the same item in the data collection.

If your form contains controls bound to multiple data sources, it will have multiple
CurrencyManager objects, one for each distinct data source. The BindingContext
object provides easy access to all CurrencyManager objects on the form. The
following code example shows how to increment the current position within a
collection of customers.

this.BindingContext[dataset, "customers"].Position += 1;

You should use the Count property on the CurrencyManager object as shown in the
following code example to ensure that an invalid position is not set.

if (this.BindingContext[dataset, "customer"].Position <
 (this.BindingContext[dataset, "customer"].Count – 1))
{
 this.BindingContext[dataset, "customers"].Position += 1;
}

 Chapter 2: Handling Data 33

The CurrencyManager object also supports a PositionChanged event. You can create
a handler for this event so that you can update your user interface to reflect the
current binding position. The following code example displays a label to show the
current position and the total number of records.

this.BindingContext[dataset, "customers"].PositionChanged +=
 new EventHandler(this.BindingPositionChanged);

The method BindingPositionChanged is implemented as follows.

private void BindingPositionChanged(object sender, System.EventArgs e)
{
 positionLabel.Text = string.Format("Record {0} of {1}",
 this.BindingContext[dsPubs1, "authors"].Position + 1,
 this.BindingContext[dsPubs1, "authors"].Count);
}

Custom Formatting and Data Type Conversion
You can provide custom formatting for data bound to a control using the Format and
Parse events of the Binding class. These events allow you to control how data is
displayed in the user interface and how data is taken from the user interface and
parsed, so that the underlying data can be updated. These events can also be used
to convert data types so that the source and destination data types are compatible.

Note: If the data type of the bound property on the control does not match the data type of the data
in the data source, an exception is thrown. If you need to bind incompatible types, you should use
the Format and Parse events on the Binding object.

The Format event occurs when data is read from the data source and displayed in
the control, and when the data is read from the control and used to update the data
source. When the data is read from the data source, the Binding object uses the
Format event to display the formatted data in the control. When the data is read from
the control and used to update the data source, the Binding object parses the data
using the Parse event.

The Format and Parse events allow you to create custom formats for displaying data.
For example, if the data in a table is of type Decimal, you can display the data in the
local currency format by setting the Value property of the ConvertEventArgs object
to the formatted value in the Format event. You must consequently format the
displayed value in the Parse event.

34 Smart Client Architecture and Design Guide

The following code sample binds an order amount to a text box. The Format and
Parse events are used to convert between the string type expected by the text box
and the decimal types expected by the data source.

private void BindControl()
{
 Binding binding = new Binding("Text", dataset,
"customers.custToOrders.OrderAmount");
 // Add the delegates to the event.
 binding.Format += new ConvertEventHandler(DecimalToCurrencyString);
 binding.Parse += new ConvertEventHandler(CurrencyStringToDecimal);
 text1.DataBindings.Add(binding);
}
private void DecimalToCurrencyString(object sender, ConvertEventArgs cevent)
{
 // The method converts only to string type. Test this using the DesiredType.
 if(cevent.DesiredType != typeof(string)) return;

 // Use the ToString method to format the value as currency ("c").
 cevent.Value = ((decimal)cevent.Value).ToString("c");
}
private void CurrencyStringToDecimal(object sender, ConvertEventArgs cevent)
{
 // The method converts back to decimal type only.
 if(cevent.DesiredType != typeof(decimal)) return;

 // Converts the string back to decimal using the static Parse method.
 cevent.Value = Decimal.Parse(cevent.Value.ToString(),
 NumberStyles.Currency, null);
}

Using the Model-View-Controller Pattern to Implement Data Validation
Binding a data structure to a user interface element allows the user to edit the data
and ensures that these changes are then written back to the underlying data structure.
Often, you will need to check the changes that the user makes to the data to ensure
that the values entered are valid.

The Format and Parse events described in the previous section provide one way
to intercept the changes the user makes to the data, so that the data can be checked
for validity. However, this approach requires that the data validation logic be
implemented together with the custom formatting code, typically at the form level.
Implementing these two responsibilities together in the event handlers can make
your code difficult to understand and maintain.

 Chapter 2: Handling Data 35

A more elegant approach is to design your code so that it uses the Model-View-
Controller (MVC) pattern. The pattern provides natural separation of the various
responsibilities involved with editing and changing data through data binding.
You should implement custom formatting within the form that is responsible for
presenting the data in a certain format, and then associate the validation rules with
the data itself, so that the rules can be reused across multiple forms.

In the MVC pattern, the data itself is encapsulated in a model object. The view object
is the Windows Forms control that the data is bound to. All changes to the model are
handled by an intermediary controller object, which is responsible for providing
access to the data and for controlling any changes made to the data through the view
object. The controller object provides a natural location for validating changes made
to the data, and all user interface validation logic should be implemented here.

Figure 2.5 depicts the structural relationship between the three objects in the MVC
pattern.

Controller

Model

View

Figure 2.5
Objects in Model-View-Controller pattern

Using a controller object in this way has a number of advantages. You can configure
a generic controller to provide custom validation rules, which are configurable at run
time according to some contextual information (for example, the role of the user).
Alternatively, you can provide a number of controller objects, with each controller
object implementing specific validation rules, and then select the appropriate object
at run time. Either way, because all validation logic is encapsulated in the controller
object, the view and model objects do not need to change.

In addition to separating data, validation logic, and user interface controls, the MVC
model gives you a simple way to automatically update the user interface when the
underlying data changes. The controller object is responsible for notifying the user
interface when changes to the data have occurred by some other programmatic
means. Windows Forms data binding listens for events generated by the objects that
are bound to the controls so that the user interface can automatically respond to
changes made to the underlying data.

36 Smart Client Architecture and Design Guide

To implement automatic updates of the user interface, you should ensure that the
controller implements a change notification event for each property that may change.
Events should follow the naming convention <property>Changed, where <property>
is the name of the property. For example, if the controller supports a Name property,
it should also support a NameChanged event. If the value of the name property
changes, this event should be fired so Windows Forms data binding can handle it
and update the user interface.

The following code example defines a Customer object, which implements a Name
property. The CustomerController object handles the validation logic for a Customer
object and supports a Name property, which in turn represents the Name property on
the underlying Customer object. This controller fires an event whenever the name is
changed.

public class Customer
{
 private string _name;
 public Customer(string name) { _name = name; }
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
}
public class CustomerController
{
 private Customer _customer = null;
 public event EventHandler NameChanged;
 public Customer(Customer customer)
 {
 this._customer = customer;
 }
 public string Name
 {
 get { return _customer.Name; }
 set
 {
 // TODO: Validate new name to make sure it is valid.
 _customer.Name = value;
 // Notify bound control of change.
 if (NameChanged != null)
 NameChanged(this, EventArgs.Empty);
 }
 }
}

Note: Customer data source members need to be initialized when they are declared. In the
preceding example, the customer.Name member needs to be initialized to an empty string. This is
because the .NET Framework does not have a chance to interact with the object and set the default
setting of an empty string before the data binding occurs. If the customer data source member is not
initialized, the attempt to retrieve a value from an uninitialized variable causes a run-time exception.

 Chapter 2: Handling Data 37

In the following code example, the form has a TextBox object, textbox1, which needs
to be bound to the customer’s name. The code binds the Text property of the TextBox
object to the Name property of the controller.

_customer = new Customer("Kelly Blue");
_controller = new CustomerController(_customer);
Binding binding = new Binding("Text", _controller, "Name");
textBox1.DataBindings.Add(binding);

If the name of the customer is changed (using the Name property on the controller),
the NameChanged event is fired and the text box is automatically updated to reflect
the new name value.

Updating the User Interface When the Underlying Data Changes
You can use Windows Forms data binding to automatically update the user interface
when the corresponding underlying data changes. You do this by implementing a
change notification event on the bound object. Change notification events are named
according to the following convention.

public event EventHandler <propertyName>Changed;

So, for example, if you bind an object’s Name property to the user interface and then
that object’s name changes as a result of some other processing, you can
automatically update the user interface to reflect the new Name value by
implementing the NameChanged event on the bound object.

Summary
There are many different considerations involved in determining how to handle data
in your smart clients. You need to determine whether and how to cache your data,
and how to handle data concurrency issues. You will often decide to use ADO.NET
datasets to handle your data, and you will probably also decide to take advantage of
the Windows Forms data binding functionality.

In many cases, read-only reference data and transient data needs to be dealt with
differently. Because smart clients typically use both types of data, you need to
determine the best way to handle each category of data in your application.

3
Getting Connected

By definition, smart clients need to connect to and communicate with other
resources and form part of a distributed application. These resources can be
client-side processes or components, or they may be network resources, such
as a Web service.

This chapter examines the nature of communication between smart clients and other
resources. It looks at the different technologies available for connecting and using
resources in other processes, components, or remote services, and it discusses how
to choose between them. Finally, it examines how best to design your smart clients
to connect to resources.

Loosely Coupled and Tightly Coupled Systems
A client application can connect to and use components and services in other
processes, both locally and on the network, in many different ways. It is useful to
categorize the different approaches by how much coupling exists between the service
and the client.

Coupling is the degree to which components (in a distributed system) depend on one
another. The nature of coupling between clients and the services they communicate
with can affect many aspects of the smart client design, including interoperability,
offline capabilities, network communication performance, deployment, and
maintenance considerations.

Tightly coupled systems often provide direct object-to-object communication, with
the object on the client having detailed knowledge of the remote object. Such tight
coupling can prevent independent updates to the client or the server. Because tightly
coupled systems involve direct object-to-object communication, objects usually
interact more frequently than in loosely coupled systems, which can cause
performance and latency problems if the two objects are on separate computers
and are separated by a network connection.

40 Smart Client Architecture and Design Guide

Loosely coupled systems are often message-based systems, with the client and
the remote service unaware of how the other is implemented. Any communication
between the client and service is dictated by the schema of the message. As long as
the messages conform to the agreed-upon schema, the implementation of the client
or service may be changed as required without fear of breaking the other.

Loosely coupled communication mechanisms offer a number of advantages over
tightly coupled mechanisms, and they help to reduce the dependency between the
client and the remote service. However, tight coupling often provides performance
benefits and allows for a tighter integration between the client and the service,
which may be required due to security or transactional requirements.

All distributed clients that communicate with remote services or components have
some degree of coupling. You need to be aware of the different characteristics
between the various loosely coupled and tightly coupled approaches so you can
choose the right degree of coupling for your application.

Communication Options
When you design your smart client application, you can choose from a number of
methods to connect it to other resources, including:
● Microsoft® .NET Enterprise Services
● Microsoft .NET remoting
● Microsoft Windows® Message Queuing (also known as MSMQ)
● Web services

.NET Enterprise Services
You can use .NET Enterprise Services to provide access to the COM+ service
infrastructure of managed code components and applications. .NET components
rely on COM+ to provide them with a number of component services, such as:
● Transaction support
● Role-based security
● Loosely coupled events
● Object pooling
● Queued components
● Just-in-time activation

 Chapter 3: Getting Connected 41

A .NET component that uses COM+ services is known as a serviced component.
Because your serviced components are hosted by a COM+ application, they must
be accessible to that application. This introduces a number of registration and
configuration requirements for the serviced component:
● The assembly must be derived from the ServicedComponent class in the

System.EnterpriseServices namespace.
● The assembly must be strong-named.
● The assembly must be registered in the Microsoft Windows registry.
● Type library definitions for the assembly must be registered and installed into a

specific COM+ application.

Assemblies that contain serviced components that are configured as out-of-process
applications should be placed in the global assembly cache. Assemblies that contain
serviced components configured as in-process libraries need not be placed in the
global assembly cache, unless they are located in a different directory than the
application. If you deploy multiple copies of the same version of a serviced
component in this way, the COM+ catalog contains the global configuration for all
instances of that component; it is not possible to configure them on a per-copy basis.

The following code example shows a component that requires a transaction and
provides a method that writes data to a database within this transaction.

using System.EnterpriseServices;

[Transaction(TransactionOption.Required)]
public class CustomerAccount : ServicedComponent
{
[AutoComplete]
public bool UpdateCustomerName(int customerID, string customerName)
{
 // Updates the database, no need to call SetComplete.
 // Calls SetComplete automatically if no exception is thrown.
}
}

Serviced components can often register dynamically the first time they run. This type
of registration is known as lazy registration. The first time a managed code application
attempts to create an instance of a serviced component, the common language
runtime (CLR) registers the assembly and the type library, and it configures the
COM+ catalog. Registration occurs only once for a particular version of an assembly.
Lazy registration allows you to deploy serviced components using Xcopy
deployment and to work with serviced components during the development cycle
without having to explicitly register them.

42 Smart Client Architecture and Design Guide

Lazy registration is the easiest method for registering your serviced components,
but it works only if the process running them has administrative privileges. Also,
any assembly that is marked as a COM+ server application requires explicit
registration; dynamic registration does not work for unmanaged clients calling
managed serviced components. In cases where the process that uses the serviced
component does not have the required privileges for dynamic registration, you need
to explicitly register the assembly containing the serviced component using the
Regsvcs.exe tool provided with the .NET Framework.

Both lazy registration and Regsvcs.exe require administrative permissions on the
client computers, so if your application includes serviced components, it cannot be
deployed using no-touch deployment. For more details, see Chapter 7, “Deploying
and Updating Smart Client Applications.”

Serviced components can be hosted and accessed in a number of different ways.
They can be hosted within an ASP.NET application and accessed through HTTP, or
they can be accessed through SOAP or DCOM (the default setting). However, if the
COM+ services need to flow with the call (for example, if you need the user’s identity
or a distributed transaction to flow from your application to the serviced component),
DCOM is the only viable solution.

Note: If you use DCOM to communicate with COM+ applications, you need to deploy interop
assemblies to the client computers, just as you would for traditional COM components.

Enterprise Services have many powerful component features that you can use in your
smart client applications. However, you should usually use these features only within
a single process, on a single client computer, or within a service boundary on the
server. Enterprise Services are generally not the best choice for communication
between a smart client application and services located on remote systems due to
their tightly coupled nature. Use Enterprise Services if your smart client application
needs to use COM+ services locally (for example, support for transactions, object
pooling, or role-based security).

For more information about Enterprise Services, see “Writing Serviced Components”
in .NET Framework Developer’s Guide at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconwritingservicedcomponents.asp?frame=true.

.NET Remoting

.NET remoting provides a flexible and extensible remote procedure call (RPC)
mechanism by which .NET components can communicate. .NET remoting allows you
to use a variety of communication protocols (such as HTTP or TCP), data encoding
options (including XML, SOAP, and binary encoding) and various object activation
models. It can provide a fast and efficient means of communication between objects.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwritingservicedcomponents.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwritingservicedcomponents.asp?frame=true

 Chapter 3: Getting Connected 43

.NET remoting allows you to call remote objects as though they are local by using a
proxy object that appears to be the remote object. The .NET remoting infrastructure
handles the interaction between the client code and the remote object through
property and method calls, encoding the data to be passed between them and
managing the creation and deletion of the remote target object.

The .NET remoting infrastructure requires that the client has detailed knowledge
of the public methods and properties of the remote object to provide a client-side
proxy. One way of ensuring that the client has this knowledge is to distribute a full
implementation of the remote object to the client. However, it is much more efficient
to factor in the public methods and properties to interface definitions and compile
these interfaces into their own assembly. The interface assemblies can then be used
by the client to provide a suitable proxy, and they can be used by the remote object
to implement the necessary functionality. This technique also allows you to update
the implementation of the remote objects without having to redistribute the full
objects to the client.

You can manage the lifetime of remote objects in a number of ways. Objects can be
created on demand to fulfill a single request, or you can control their lifetime more
finely by using a lease mechanism, where the client maintains a lease on the remote
object and the remote object is kept alive as long as the client wants to use it. .NET
remoting can also guarantee that only one object instance exists for all clients. You
can choose the lifetime for your application according to your requirements for state
management and scalability.

The extensible infrastructure of .NET remoting allows you to create custom channels
and sinks. Custom channels allow you to define the way in which data is transmitted
over the network. For example, you can define a custom channel to implement a
custom wire protocol. Custom sinks allow you to intercept and perform actions on
the data as it is sent between objects. For example, you can define a custom sink to
encrypt or compress the data before and after transmission.

.NET remoting has a powerful and extensible mechanism for communicating
between objects. However, due to its tightly coupled nature, it may not be suitable
for all situations. .NET remoting requires .NET-implemented objects on both the
client and server; therefore, it is not suitable for situations in which interoperability
between different environments is a requirement. .NET remoting is also not suitable
in situations where tightly coupled RPC-style interaction between client and server
is inappropriate. By default, .NET remoting does not provide any built-in mechanism
for encryption or for passing the user’s identity or a transaction between objects.
For these situations, Enterprise Services should be used.

.NET remoting is a good choice, however, for communicating between objects in
different processes on the client computer or within a service boundary, or for objects
in different application domains.

44 Smart Client Architecture and Design Guide

For more details about using .NET remoting, see “An Introduction to Microsoft .NET
Remoting Framework” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dndotnet/html/introremoting.asp?frame=true.

For information about choosing between Web Services and Remoting, see “ASP.NET
Web Services or Remoting: How to Choose” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch16.asp?frame=true.

Message Queuing
With Microsoft Windows Message Queuing, it is easy for you to communicate with
applications quickly and reliably by sending and receiving messages. Messaging
provides you with guaranteed message delivery and a reliable way to carry out many
business processes. Message Queuing provides a loosely coupled communication
mechanism you can use within your smart client application. Message Queuing has
the following features:
● Guaranteed message delivery. Message Queuing guarantees that messages are

delivered despite the failure or absence of the remote system by storing messages
in a queue until they can be delivered. Therefore, messages are considerably less
affected by failures than are direct calls between components.

● Message prioritization. More urgent or important messages can be received
before less important messages, which can help to guarantee adequate response
time for critical applications.

Note: You can set message priority only for nontransactional messages.

● Offline capabilities. If messages cannot be delivered because the client is offline,
they are stored in the outgoing queue and are delivered automatically when the
client goes back online. Users can continue to perform operations when access to
the destination queue is unavailable. In the meantime, additional operations can
proceed as if the message had already been processed, because the message
delivery is guaranteed when the network connection is restored.

● Transactional messaging. You send messages as part of a transaction. In this way,
you can send several related messages or design your application to participate in
a distributed transaction, and ensure that all messages are delivered in order and
are delivered only once. If any errors occur within the transaction, the entire
transaction is cancelled and no messages are sent.

● Security. The Message Queuing technology on which the MessageQueue
component is based uses Windows security to secure access control, provide
auditing, and encrypt and authenticate the messages your component sends and
receives. Message Queuing messages can be encrypted on the wire to make them
impermeable to packet sniffers. You can also prevent queues from receiving
unencrypted messages.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/introremoting.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/introremoting.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch16.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetarch16.asp?frame=true

 Chapter 3: Getting Connected 45

Applications that use Message Queuing can send and read messages from queues
by using the classes in the System.Messaging namespace. The Message class
encapsulates a message to be sent to a queue, while the MessageQueue class
provides access to a specific queue and its properties.

You need to install and configure Message Queuing on any computer that will use
it. Message Queuing is available for Windows desktop operating systems and for
Microsoft Windows CE .NET, allowing you to use it on mobile devices such as
Pocket PC devices.

Message Queuing is a good choice for interacting with services that provide message-
based access. You can use Message Queuing to communicate with other systems that
have Message Queuing installed. Interoperability with other systems is limited,
though you can use connectivity toolkits to communicate with other messaging
systems such as MQSeries from IBM.

For more information about using Message Queuing, see “Message Queuing
(MSMQ)” in the Microsoft Platform SDK documentation at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/msmq/msmq_overview_4ilh.asp?frame=true.

For information about MSMQ-MQSeries bridge programming, see
“Programming Considerations Using MSMQ-MQSeries Bridge Extensions”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm
/_sna_programming_considerations_using_msmq_mqseries_bridge_extensions_appl.asp.

Web Services
A Web service is an application component that:
● Exposes useful functionality to other Web services and applications through

standard Web service protocols.
● Provides a detailed description of its interfaces, allowing you to build client

applications that communicate with it. The description is provided in an XML
document called a Web Services Description Language (WSDL) document.

● Describes its messages by using an XML schema.

The SOAP-based XML messages of Web services can have explicit (structured
and typed) parts or loosely defined parts (using arbitrary XML). This means that
Web services can be either loosely coupled or tightly coupled and can be used to
implement message-based or RPC-style systems, depending on the precise
requirements of your environment.

You can use Web services to build modular applications within and across
organizations in heterogeneous environments. These applications can be
interoperable with a broad variety of implementations, platforms, and devices.
Any system that can send XML over HTTP can use Web services. Because Web
services are based on standards, systems written in different languages and on
different platforms can use each other’s services. This is often referred to as a
service-oriented architecture.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msmq/msmq_overview_4ilh.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msmq/msmq_overview_4ilh.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/_sna_programming_considerations_using_msmq_mqseries_bridge_extensions_appl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/htm/_sna_programming_considerations_using_msmq_mqseries_bridge_extensions_appl.asp

46 Smart Client Architecture and Design Guide

The main standards used with Web services are HTTP, SOAP, UDDI, and WSDL.
Web services are agnostic to transport protocols. However, HTTP is the most common
mechanism for transporting SOAP messages. Therefore, Web services are well suited
for applications that traverse networks and corporate firewalls, such as smart clients
that need to communicate with services over the Internet.

A number of Web services standards are emerging to extend the functionality of
Web services. Microsoft Web Services Enhancements (WSE) 2.0 supports emerging
Web services standards such as WS-Security, WS-SecureConversation, WS-Trust,
WS-Policy, WS-Addressing, WS-Referrals, and WS-Attachments and Direct Internet
Message Encapsulation (DIME). WSE provides a programming model to implement
various specifications that it supports. For more information, see “Web Service
Enhancements (WSE)” at http://msdn.microsoft.com/webservices/building/wse/default.aspx.

For more information about SOAP, see “Understanding SOAP” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html
/understandsoap.asp.

For more information about WS-Security, see “Web Services Security Specifications
Index Page” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec
/html/wssecurspecindex.asp.

Web service communications can be coarse-grained, self-contained, and stateless.
However, Web services are often very verbose compared to other forms of
communication.

Web services are the best approach for building most smart client applications.
The high degree of interoperability allows Web services to communicate with a
wide range of applications. The use of widely adopted standards means that they can
usually pass through network infrastructure and firewalls with minimal additional
configuration (compared to other technologies that require proprietary ports to be
opened). Strong support for Web services in the Microsoft Visual Studio®
development system means that you can work with them in a single development
environment.

Web services may not be appropriate in extremely high performance applications
because they are verbose and contain relatively heavy message payloads compared
to other messaging technologies such as .NET remoting and Message Queuing.

For more information about using and building Web services, see “XML Web Services
Created Using ASP.NET and XML Web Service Clients” in .NET Framework Developer’s
Guide at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconaspnetbuildingwebservicesaspnetwebserviceclients.asp?frame=true.

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html/understandsoap.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsoap/html/understandsoap.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wssecurspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wssecurspecindex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetbuildingwebservicesaspnetwebserviceclients.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetbuildingwebservicesaspnetwebserviceclients.asp?frame=true

 Chapter 3: Getting Connected 47

Choosing a Communication Option
Different communication options are appropriate in different situations. Table 3.1
summarizes the different options for getting connected.

Table 3.1: Smart Client Options

Option Advantages Disadvantages

Enterprise Services Provides access to COM+ services

Allows identity to flow with call

Requires serviced components to be
installed at the client

Suitable only for same process or
computer

.NET remoting Fast

Pluggable

Supports custom protocols

Requires .NET Framework to run

Proprietary

Cannot traverse firewalls without
RPC ports open

No security infrastructure

Message Queuing Useful for communicating with
messaging systems

Secure

Guaranteed message delivery

Requires Message Queuing to be
configured on the client

Does not integrate easily with other
systems

Web services Supports integration

Extensible

Strong industry support

Clearly defined standards

Vendor/language agnostic

Secure

Verbose

Performance slower than .NET
remoting

As Table 3.1 illustrates, there are some situations in which Enterprise Services,
NET remoting, and Message Queuing may be appropriate technologies for
communication between smart clients and the connected resources. However,
in most cases, Web services are the best mechanism for connecting smart client
applications to services.

An architecture built around Web service communication can work well in both
a connected and offline environment, with support for coarse-grained, stateless
messages that are self-describing and self-contained. The reliance on Internet
protocols allows for wide distribution of the client to anyone on the Internet.

48 Smart Client Architecture and Design Guide

Designing Connected Smart Client Applications
As you design your smart clients, there are a number of recommendations you
should consider, including:
● Use coarse-grained, encapsulated messages.
● Avoid distributed ACID transactions.
● Avoid sending datasets across the network.
● Break up large datasets.
● Version your Web services and assemblies.

Use Coarse-Grained, Encapsulated Messages
Distributed network calls are expensive operations. You should not design your
external interfaces in the same fine-grained way you would design local interfaces,
or performance will suffer. To avoid message dependencies between messages, it is a
good idea to build interfaces methods as self-contained functions. Doing so saves you
from writing complex tracking reconciliation code to handle the failure of a message
that depends on the successful completion of another.

Avoid Distributed ACID Transactions
Distributed ACID (atomic, consistent, isolated, durable) transactions are resource-
intensive, with a lot of network traffic and a lot of interdependent system locks on
pending local transactions. If your smart client or service is waiting for a reply and
cannot continue until the reply is received, a distributed ACID transaction can block
business processes.

The problems of distributed ACID transactions are exacerbated if your smart clients
are likely to switch to offline mode without warning. In this case, a client may place
a lock on data and go offline before the lock can be released at the server.

If you cannot avoid message dependency by breaking up your interfaces into single
discrete messages, you have a number of options to deal with transactions and still
avoid distributed ACID transactions:
● Submit tightly coupled messages to the server and have a transaction coordinator

such as Microsoft BizTalk® Server handle message dependencies.
● Write transaction-compensating code yourself on the client or server. Use

a communications protocol that the server can use to decide when to start a
transaction and how to notify the client regarding the successful completion
or failure of the transaction to be processed in its entirety.

 Chapter 3: Getting Connected 49

Avoid Sending Datasets Across the Network
Datasets can be too big and verbose to use as a communication payload mechanism
for sending data across many tiers. Instead, you should use data transfer objects
(DTOs) to decrease the message payload to your external interfaces. For data
changes, you should consider sending the only the changed data instead of the
entire set of data.

For more information about DTOs see Chapter 2, “Handling Data.”

Break Up Large Datasets
Large datasets can cause performance problems at the client if you try to display
them all at the same time. Therefore, you should break them up into smaller datasets.
Breaking up data in this way is known as paging. For example, instead of displaying
the entire contents of a phone directory, you may choose to display one page at a time
(for example, 20 records per screen, displayed alphabetically). If you design the client
to use paging, you should ensure that the user interface is designed to make
navigating between pages easy for the user.

This concept of breaking up large datasets also applies to communication with the
server over the network. If you can break the data into manageable chunks, you can
then load the required data on an as-needed basis, a technique known as lazy loading.
In the phone directory example, only the data needed for the current operation
would be loaded, reducing the impact on the application and on the network,
and potentially making both more responsive.

To improve the user experience, you can use additional threads to perform
background processing and communication with services in anticipation of
upcoming user requests.

Although support for lazy loading may be an important aspect of your smart
client application design, you should bear in mind the offline requirements of your
application. Lazy loading of data that travels over the network may prevent your
application from functioning offline as you hope.

Version Your Web Services and Assemblies
When you upgrade and release new versions of your smart client software to clients,
you should create new versions of the assemblies. If you use versioned assemblies,
and if you design your server services to support backward-compatible interfaces,
you can support multiple versions of the client software. When releasing new
versions of your Web services, you should differentiate them with a canonical
naming convention. Alter the namespaces of each release so that they contain
date information to make it clear what version of a Web service clients are
communicating with.

For more details about handling multiple versions of assemblies, see Chapter 7,
“Deploying and Updating Smart Client Applications.”

50 Smart Client Architecture and Design Guide

Summary
Smart clients need to access resources, both local and remote, to function. How you
handle this communication can be critical to your success in designing smart clients
that are reliable and responsive to the user. Requirements such as performance,
security, and flexibility affect what the appropriate connectivity choice is for your
environment. Using the guidance in this chapter, you should determine which forms
of connectivity are right for your smart clients, and then design your smart clients
and the resources with which they communicate accordingly.

4
Occasionally Connected
Smart Clients

We live in an increasingly connected world. However, in many cases we cannot rely
on connectivity 100 percent of the time. Your users may travel, they may temporarily
lose wireless connectivity, there may be latency or bandwidth problems, or you may
need to take down parts of the network for maintenance. Even if users do have good
network connectivity, your applications may not be able to access network resources
all of the time. A requested service could be busy, down, or just temporarily
unavailable.

An application is occasionally connected if at times it cannot interact with services or
data over a network in a timely manner. If you can allow your users to be productive
with their applications when they are offline, and still provide them with the benefits
of a connected application when the connection is working, you can increase user
productivity and efficiency and increase the usability of your applications.

One of the primary benefits of smart clients over Web-based applications is that they
can allow users to continue working when the application cannot connect to network
resources. Occasionally connected smart clients are capable of performing work when
not connected to a network resource and then updating network resources in the
background at a later time. The update may happen almost immediately, but
sometimes it can happen days or even weeks later.

52 Smart Client Architecture and Design Guide

To given an application full occasionally connected capabilities, you need to provide
an infrastructure that allows users to work when they have no connection to network
resources. This infrastructure should include data caching, so that all required data
is available on the client, and storage of the details of users’ work, which can be used
to synchronize the client and network resources when the user goes back online. The
exact features and capabilities that your application needs to support occasionally
connected operations depends on its connectivity, operational environment, and the
functionality that the user expects when online and offline. However, all smart client
applications should provide some sort of experience for the users when not
connected to the network, even if the functionality is extremely limited. When
designing and building your applications, you should always avoid generating
error messages on the client because a server is not available.

This chapter looks at the issues that you face as you build applications with offline
capabilities. It reviews different strategies for designing offline applications, discusses
in detail design considerations, examines how to structure applications to use tasks,
and looks at how your applications should handle data.

Common Occasionally Connected Scenarios
Occasionally connected smart clients are extremely useful in many common
situations. Many offline scenarios involve the user explicitly disconnecting from
the network and working without a network connection, for example:
● An insurance agent may need to create a new insurance policy while out of

the office. He or she may be required to enter all the relevant data, calculate
premiums, and issue policy details without being able to connect to the systems
in the office.

● A sales representative may need to place a large order while on site with the
customer, where the representative cannot connect to the server. He or she may
need to consult price lists and catalog information, enter all order data, and
provide estimates of delivery and discount levels without having to connect.

● A maintenance technician may require detailed technical information while
attending to a service call at a client’s site. The application helps him or her to
diagnose the problem, provides technical documentation and details, and allows
the technician to place an order for parts and to document his or her actions
without having to connect.

 Chapter 4: Occasionally Connected Smart Clients 53

Other offline scenarios involve intermittent or low quality connectivity, for example:
● Connectivity between customer call centers around the world and a corporate

network may not be of sufficiently high quality to allow online usage at all times.
The application should provide offline capabilities, including data caching, so that
the usability of the application is maintained.

● Medical staff traveling with Tablet PCs may experience disruptions in network
connectivity as they travel. When the application connects, it should synchronize
data in the background, and should not wait for an explicit reconnect.

Occasionally connected smart clients should be designed to take maximum
advantage of a connection when it is available, ensuring that both applications and
data are as up to date as possible, without adversely affecting the performance of the
application.

Occasionally Connected Design Strategies
There are two broad approaches to architecting occasionally connected smart client
applications: data-centric and service-oriented.

Applications that use the data-centric strategy have a relational database
management system (RDBMS) installed locally on the client, and use the built-in
capabilities of the database system to propagate local data changes back to the server,
handle the synchronization process, and detect and resolve any data conflicts.

Applications that use the service-oriented approach store information in messages
and arrange those messages in queues while the client is offline. After the connection
is reestablished, the queued messages are sent to the server for processing.

54 Smart Client Architecture and Design Guide

Figure 4.1 shows data-centric and service-oriented approaches.

Service-Oriented Approach

Smart Clients
User Interface Logic

Data-Centric Approach

Local Data Logic

User Interface Logic

Business Logic in UI

Servers

Business Logic

Business Logic

Replication/Business Logic
Messages

E.g. Web Service Calls

Service Interfaces

Service Agents

Figure 4.1
Service-oriented vs. data-centric approach to occasionally connected application design

This section examines both approaches in detail and explains when you should use
each approach.

 Chapter 4: Occasionally Connected Smart Clients 55

The Data-Centric Approach
When you use the data-centric approach, typically the server publishes the data and
the client creates a subscription to the data it needs, so that it can copy that data to
the local data store before the client goes offline. When the client is offline, it makes
changes to the local data through calls to the local data store. When the client is back
online, the data store propagates the changes made to the data on the client back to
the server. Changes made to the data on the server may also be propagated back to
the client. Any conflicts encountered during the merge phase are handled by conflict
resolution rules specified on the server or the client, according to custom rules
defined by the business analyst.

The process of merging changes between the client and server is known as merge
replication. Changes can occur autonomously at both the client and the server, so
ACID (atomic, consistent, isolate, durable) transactions are not used. Instead, when
a merge is performed, all subscribers in the system use the data values held by the
publisher.

The main advantage of the data-centric approach is that all change-tracking code
is contained inside the relational database. Generally, this includes code for conflict
detection at both the column and row level of the database, data validation code,
and constraints. This means that you do not have to write your own change-tracking
or conflict detection and resolution code, although you do need to be aware of the
merge-replication scheme so that you can optimize your applications for data
conflicts and data updates.

In the data-centric model, the database system handles synchronization; therefore,
you do not need to implement all data synchronization functionality yourself. Users
define which tables require data synchronization, and the database system allows
the infrastructure to track changes and detect and resolve conflicts. You can extend
this infrastructure to provide custom conflict resolution or avoidance through custom
resolvers that use COM objects or Transact SQL (TSQL) stored procedures. Also,
because there is a single data repository across the system, data convergence is
guaranteed between a server and a client at the completion of synchronization.

There are, however, some disadvantages to a data-centric approach. The need for
a local database on the client means that the approach may not be suitable in the
following situations:
● If the application runs on a small device
● If a light-touch deployment mechanism is required
● If non-administrator users should be able to deploy the application

56 Smart Client Architecture and Design Guide

Microsoft provides database software that runs on the Windows® client, Windows
Server™ and Pocket PC platforms, but it does not provide database software for
SmartPhone devices.

Also, the tight coupling between the database on the server and the one on the client
means that changes made to the database schema at the server have a direct impact
on the client. This can make it difficult to manage database schema changes to the
client or server.

With a large number of clients, there is a need to provide a manageable and scalable
way to deploy distinct data sets. Merge replication supports dynamic filtering, which
allows the administrator to define these offline datasets and deploy them in a scalable
fashion. You should take advantage of the filtering mechanism provided by the
database to reduce the amount of data to be sent between client and server, and
to reduce the likelihood of conflicts.

There can be many benefits to using a local database to store and manipulate data
locally. You can use the database to propagate local changes back to the server and
to help handle synchronization issues.

You should use the data-centric approach when:
● You can deploy a database instance on the client.
● Your application can function in a two-tier environment.
● You can tightly couple the client to the server through data schema definitions and

communication protocol.
● You want built-in change tracking and synchronization.
● You want to rely on the database to handle data reconciliation conflicts and

minimize the amount of custom reconciliation code that needs to be written.
● You are not required to interact with multiple disparate services.
● Windows users are able to connect to a database directly through a local area

network (LAN) or a virtual private network (VPN/IPSec). Applications written
for the Pocket PC platform can synchronize HTTP through HTTPS.

Note: This guide does not cover the data-centric approach in depth. It is more fully described in
many places, including the Microsoft SQL Server Books Online or MSDN. For more details on the
data-centric approach, see “Merge Replication” at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/replsql/repltypes_6my6.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/replsql/repltypes_6my6.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/replsql/repltypes_6my6.asp

 Chapter 4: Occasionally Connected Smart Clients 57

The Service-Oriented Approach
With the service-oriented approach, the client can interact with whatever services are
required. Also, the client is focused on the service requests themselves, rather than
on making direct changes to locally held data. The service requests may lead to state
changes on the client or the server, but such changes are by-products of the service
requests.

One advantage of the service-oriented strategy is that a local relational database is
not required on the client. This means that the approach can be applied to many
different client types, including those with a small amount of processing power,
such as mobile phones.

A service-oriented approach is particularly appropriate when your application has
to operate in an Internet and extranet environment. If your client operates outside
the firewall and interacts with corporate services, by using a service-oriented strategy,
you can avoid having to open up specific ports in the firewall, for example to enable
direct database or Microsoft Message Queuing (MSMQ) access.

The loose coupling means that you can use different data schemas on the client than
on the server, and transform the data at the client. In fact, the client and server do not
need to be aware of each other. You can also update both the client and server
components independently.

The main disadvantage of this approach is that you need to write more infrastructure
code to facilitate the storing and forwarding of messages, as well as to detect when
the application is online or offline. This can give you more flexibility in your design,
but often means more work in creating your offline clients.

Note: The Smart Client Offline Application Block provides you with code that supports a service-
oriented strategy for offline clients. You can use this block to detect when an application is on
or offline and store and forward messages to a server for processing. For an overview of this
application block, see Smart Client Offline Application Block at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag/html/offline.asp.

The service-oriented approach is most suitable for smart clients that need to
interact with a number of different services. Because the payload of the message
is encapsulated, the transport layer can vary without affecting the contents of the
message. For example, a message originally destined for a Web service could just as
easily be sent to a service that consumed Message Queuing messages. The fact that
the message is transport agnostic also allows for custom security implementations
if required by the application.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/offline.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/offline.asp

58 Smart Client Architecture and Design Guide

You should use the service-oriented approach when:
● You want to decouple the client and server to allow independent versioning and

deployment.
● You require more control and flexibility over data reconciliation issues.
● You have the developer expertise to write more advanced application

infrastructure code.
● You require a lightweight client footprint.
● You are able to structure your application into a service-oriented architecture.
● You require specific business functionality (for example, custom business rules

and processing, flexible reconciliation, and so on).
● You need control over the schema of data stored on the client and flexibility that

might be different from the server.
● Your application interacts with multiple or disparate services (for example,

multiple Web services or services through Message Queuing, Web services,
or RPC mechanisms).

● You need a custom security scheme.
● Your application operates in an Internet or extranet environment.

While both the data-centric and service-oriented approaches are valid architectural
approaches, many smart client applications are not able to support full relational
database instances on the client. In such cases, you should adopt a service-oriented
approach and ensure that you have the appropriate infrastructure in place to handle
issues such as data caching and conflict detection and resolution.

For this reason, the remainder of this chapter focuses on the issues that smart client
developers need to consider when implementing a service-oriented approach.

 Chapter 4: Occasionally Connected Smart Clients 59

Designing Occasionally Connected Smart Client Applications
Using a Service-Oriented Approach

As you design your occasionally connected smart clients using a service-oriented
approach, there are a number of issues that you need to address. These include:
● Favoring asynchronous communication
● Minimizing complex network interactions
● Adding data caching capabilities
● Managing connections
● Designing a store-and-forward mechanism
● Managing data and business rule conflicts
● Interacting with create, read, update, delete (CRUD)–like Web services
● Using a task-based approach
● Handling dependencies

This section discusses these issues in more detail:

Favoring Asynchronous Communication
Applications use one of two methods of communication when interacting with data
and services located on the network:
● Synchronous communication. The application is designed to expect a response

before it continues processing (for example, synchronous RPC communication).
● Asynchronous communication. The application communicates by using a message

bus or some other message-based transport, and expects a delay between the
request and any response or expects no response at all.

Note: In this guide, synchronous communication refers to all communication that expects a
response before processing can continue, even if the synchronous call is carried out on a separate
background thread.

If you are designing a new smart client application, you should ensure that it
primarily uses asynchronous communication when interacting with data and services
located on the network. Applications that are architected to expect a delay between
the request and a response are well-suited to occasionally connected use, as long as
the application provides significant and useful functionality while waiting for a
response and does not prevent a user from carrying on with his or her work if the
response is delayed.

60 Smart Client Architecture and Design Guide

When the application is not connected to network resources, you can store requests
locally and send them to the remote service when the application reconnects. In both
the offline and online cases, because the application is not expecting an immediate
response to a request, the user is not prevented from continuing to use the
application and can continue working.

Applications that use synchronous communication, even on a background thread,
are not well suited to be occasionally connected. You should therefore minimize the
use of synchronous communications in your smart clients. If you are redesigning an
application that uses synchronous communication to be a smart client, you should
ensure that it adopts a more asynchronous communication model so that it can
function offline. However, in many cases you can implement synchronous-like
communication on top of an asynchronous infrastructure (known as the sync-on-
async model) so that application design changes can be kept to a minimum.

Architecting your applications to use asynchronous communication can bring you
benefits that go beyond occasionally connected use. Most applications designed for
asynchronous communication are more flexible than those that use synchronous
communications. For example, an asynchronous application can be shut down part
way through a task without affecting the processing of requests or responses when
it starts again.

In most cases, you do not need to implement both synchronous and asynchronous
behavior in an application for online and offline usage. An asynchronous behavior is
suitable for both online and offline use; requests are processed in near real time when
the application is online.

Minimizing Complex Network Interactions
Occasionally connected smart clients should minimize or eliminate complex
interactions with network-located data and services. When your application is offline,
it may have to store requests and send them when the application reconnects, or it
may need to wait a while for responses. Either way, the application does not
immediately know whether a request will succeed or has succeeded.

To allow your application to continue working while offline, you must make certain
assumptions about the success of network requests or changes to local data. Keeping
track of these assumptions and the dependencies between service requests and data
changes can be complex. To ease this burden, you should design your smart client
applications around simple network interactions as much as possible.

Typically, requests that do not return any data (fire-and-forget requests) are not a
problem for occasionally connected applications; the application can store the request
and forward it when it reconnects. When the application is offline, it does not know if
the call has succeeded; therefore, the application has to assume that the call
succeeded. This assumption can influence subsequent processing.

 Chapter 4: Occasionally Connected Smart Clients 61

If a request returns data that is required before the application can continue working,
your application must use tentative or dummy values or function without the data.
In this situation, you need to design the application to keep track of tentative and
confirmed data, and design the user interface to make the user aware of data that
is tentative or pending This allows the user or the application to make informed
decisions based on the validity of the data and prevents problems with data
conflicts and corruption later on.

In situations where the user completes a number of discrete units of work while
offline, your application should allow each unit of work to succeed or fail on its own
account. For example, in an application that lets the user enter order information,
the application can let the user enter as many orders as required, but the application
must make sure that one order does not depend on the success of another order.

It is relatively easy to ensure that there are no dependencies between units of work
when the application has to make only one service request per unit of work. This
allows your application to keep track of pending requests and to process them when
it goes online. However, in some situations the user tasks are more complicated and
multiple service requests have to be made to complete them. In these cases, the
application must make sure that each request is consistent with the others so that
it can maintain data integrity.

Adding Data Caching Capabilities
Your application needs to make sure that all of the data necessary for the user to
continue working is available on the client when it goes offline. In some cases, your
application should cache data on the client for performance reasons, but many times
your application must cache additional data to allow for occasionally connected use.
For example, volatile data may not have been cached for an application designed to
be used online, but enabling the same application to work offline requires that the
data be cached on the local computer. Both the client and server sides must be
designed to account for data volatility so that they can handle updates and conflicts
appropriately.

When an application is offline, you may choose not to delete out-of-date data from
the application data cache and instead use the out-of-date data to allow the user to
continue working. In other cases, the application may need to automatically delete
the data from the cache to prevent the user from using it and causing problems at
a later time. In the latter case, the application may cease to provide the required
functionality until new data has been obtained through a synchronization process.

62 Smart Client Architecture and Design Guide

Refreshing data in the cache can occur in a number of ways, depending on the style
and functionality of your application. For some applications, the cached data can be
refreshed automatically when it expires, periodically according to some schedule,
when the application performs a sync operation, or when the server changes the data
and informs the application of the change. Other applications might allow the user to
manually select data to be cached, allowing the user to examine or work on the data
while offline.

Other data caching considerations also apply, such as security and data-handling
constraints. These issues are not encountered solely in offline-capable applications
and are described more fully in Chapter 2, “Handling Data.”

Handling Changes to Reference Data
Reference data is data that changes infrequently. Typically, applications include a
significant amount of this data. For example, in a customer record, the customer
name changes infrequently. This type of data can easily be cached on the client,
but sometimes your reference data will change and you must have a mechanism
to propagate those changes to your smart clients.

You have two options for propagating the data: the push model and the pull model.

In the push model, the server proactively notifies the client and tries to push the
data out. In the data-centric approach, this consists of the server data replicating the
refreshed data on the client data stores. In the service-oriented approach, this could
be a message containing the updated data. (This requires the client to implement an
endpoint to which the server can connect.)

In the pull model, the client contacts the server for an update. The client may do this
by checking the server on a regular basis or by examining metadata with the original
data that states when the reference data expires. The client may even pull data from
the server early (for example, a price list), and use it only when it becomes valid.

In some cases, you may choose to adopt a model where the server notifies the client
that an update is available (for example, by sending an alert when the client
connects), and the client then pulls the data from the server.

Managing Connections
As you are design your occasionally connected smart clients, you should consider
the environment in which your application operates, both in terms of the available
connectivity and the desired behavior of your application as this connectivity
changes.

 Chapter 4: Occasionally Connected Smart Clients 63

Some applications should be designed to operate for long periods of time (days or
even weeks) without a connection. Others should be designed to expect a connection
at all times, but have the ability to handle temporary disconnection gracefully. Some
applications should provide only a subset of functionality when offline, while others
should provide most of their functionality for offline usage.

While many occasionally connected scenarios involve the user explicitly
disconnecting from the network and working without a connection, sometimes the
application is offline without it being explicitly disconnected from the network. Your
applications can be designed to deal with one or both of these scenarios.

Manual Connection Management
Your application can be designed to function when the user decides to work offline.
The application must store all of the data that the user may need on the local
computer. In this case, the user interacts with the application knowing that it is
offline, and the application does not attempt to perform network operations until
it is explicitly told to go online and perform a synchronization operation.

You may also include support for users to notify the application when they are using
a connection that is of high connection cost or low bandwidth, such as a commercial
wireless hotspot, a mobile phone connection, or a dial-up connection. In this case,
the application may be designed to batch requests so that when a connection is
formed, its use can be maximized.

Automatic Connection Management
Your application can be designed to dynamically adapt when changes to connectivity
happen unexpectedly. These changes could include the following:
● Intermittent connectivity. Your application can be designed to adapt or handle

gracefully those occasions when the network connection is temporarily lost. Some
applications may temporarily suspend functionality until the application can go
back online, whereas others must provide full functionality.

● Varying connection quality. Your application can be designed to anticipate that
the network connection has low bandwidth or high latency, or may determine
this dynamically and alter its behavior to suit its environment. If the connection
quality deteriorates, the application may cache data more aggressively.

● Varying service availability. Your application can be designed to handle the
unavailability of services it normally interacts with, and switch to its offline
behavior. If the application interacts with more than one service and one of those
services becomes unavailable, it may elect to consider all services as offline.

64 Smart Client Architecture and Design Guide

You can detect whether a smart client application has connectivity by using the
wininet.dll. This is the same DLL that Microsoft Internet Explorer uses to determine
whether users are connected to the Internet. The following code example shows how
to call wininet.dll.

 [DllImport("wininet.dll")]
 private extern static bool InternetGetConnectedState(out int
 connectionDescription, int reservedValue) ;

 public bool IsConnected() {
 int connectionDescription = 0;
 return InternetGetConnectedState(out connectionDescription, 0);
}

Designing Store-and-Forward Mechanisms
If you design your application to use a service-oriented architecture, you must
provide a store-and-forward mechanism. With store-and-forward, messages are
created, stored, and eventually forwarded to their respective destinations. The most
common implementation of store-and-forward is the message queue. This is the
way in which message-oriented middleware products, such as Microsoft Message
Queuing, work. As new messages are created, they are put into message queues and
are forwarded to their destination addresses. While there are other store-and-forward
alternatives (such as FTP or copying files between client and server), this guide
focuses solely on the most common implementation: the message queue.

Your smart clients need a way of persisting messages when the smart client goes
offline. If your application needs to create new messages when offline, your queue
must have a way of persisting them for later updates with the server. The most
obvious choice here is writing them to disk.

Your design needs to include functionality that ensures that messages are
successfully delivered to their destination. Your design should take into account
the following scenarios:
● Lack of confirmation that a message was sent properly. In general, you should

not assume that a message was received at the server just because it has left a
queue.

● Loss of connectivity between the client and server. In some cases, you must
return a message from a queue because connectivity was lost between the client
and the server.

● Lack of acknowledgement from a service. In this case, you may need to send
an independent acknowledgement to inform the client that the information was
received.

 Chapter 4: Occasionally Connected Smart Clients 65

Your store-and-forward mechanism may also need to support additional
functionality, such as message encryption, prioritization, locking, and
synchronization.

Building and designing reliable messaging architectures is a complex task and
requires considerable experience and expertise. For that reason, you should strongly
consider commercial products such as Microsoft Message Queuing. However,
Microsoft Message Queuing requires software on the client, which may not be an
option for all smart clients.

Another option for message queue management is to use the Smart Client Offline
Application Block, available at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnpag/html/offline-CH01.asp.

This application block provides services and infrastructure that smart clients can use
to provide offline capabilities to their applications. The block supports the store-and-
forward approach to messaging using the message queue concept. By default, the
block supports Message Queuing integration among other message persistence
mechanisms (memory, isolated storage, and Microsoft SQL Server™ Desktop
Engine [MSDE]).

Managing Data and Business Rule Conflicts
Changes that are made in an application in offline mode must be synchronized or
reconciled with the server at some point. This raises the possibility of a conflict or
other problem that the application, user, or administrator must resolve. When
conflicts do occur, you must ensure that they are detected and resolved.

Unlike data conflicts, business rule conflicts do not occur because there is a conflict
between two pieces of data, but because a business rule has been violated somewhere
and needs to be corrected. Both data conflicts and business rule conflicts may need to
be handled by either the client application or the user.

As an example of a business rule conflict, suppose that you have an order
management application that caches a product catalog so that the user can enter
orders into the system when offline. The orders are then forwarded to the server
when the application is back online. If an order contains a product that was in the
cached product catalog but has been discontinued by the time the application goes
back online, when the order data is forwarded to the server it checks the order details
and sees that the product has been discontinued. At this point, the application can
inform the user that there is a problem with the order. If the product in question has
been replaced or superseded, the system can give the user the ability to switch to a
different product. This situation is not a data conflict because the data does not
conflict with anything, but it is still incorrect and needs to be fixed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/offline-CH01.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/offline-CH01.asp

66 Smart Client Architecture and Design Guide

Although business rule exceptions and data conflicts are different types of exceptions,
they can most often be handled using the same basic approaches and infrastructure.
This section discusses how to handle data and business rule conflicts in a smart client
application.

Partitioning and Locking Data
Any system that allows multiple parties to access shared data has the potential for
producing conflicts. As you design your smart client application, you must determine
whether it partitions data and how it performs locking, because these factors help
determine how likely conflicts are to occur in your application.

Data Partitioning

Data partitioning can be used in situations where different individuals have control
over separate sections of data. For example, a sales representative may have a
number of accounts assigned to him or her only. In this case, you can partition the
data so that only that sales representative can change those accounts. Partitioning the
data in this way allows users to make arbitrary changes to the data without fear of
encountering data conflicts.

Designing your applications to use data partitioning is often very restrictive, and so
is not a good solution in many cases. However, if data partitioning is practical for a
specific application, you should strongly consider it, because it helps reduce the
number of conflicts produced by your application.

Pessimistic Locking

Pessimistic locking is where the system uses mutually exclusive locks to ensure that
only one party operates on system data at a time. All requests to data are serialized.
For example, before going on the road, a salesperson may access a database and
logically check out the customer accounts for customers in a certain geographic area.
This check-out may require updating a spread sheet in the office and e-mailing others
to update the account status. Now, when the salesperson is on the road, the rest of the
sales staff understands that this salesperson has exclusive access to these customer
files and is free to make whatever modifications necessary. When he or she returns to
the office and synchronizes the new data with the server data, there should be no
conflicts. After synchronizing the data, the salesperson releases the logical lock.

The main problem with pessimistic locking is that if multiple parties need to operate
on the same data at the same time, they have to wait for the data to be available. For
occasionally connected smart clients, data may be locked until a client comes online
again, which could be a very long time. This makes pessimistic locking good in terms
of data integrity because there is no possibility for conflicts, but bad in terms of
concurrency.

 Chapter 4: Occasionally Connected Smart Clients 67

In reality, pessimistic locking is only suitable for a few types of occasionally
connected applications. In document management systems, for example, users may
intentionally check out documents for a prolonged period of time while they work on
them. However, as scalability and complexity increase, pessimistic locking becomes a
less practical choice.

Optimistic Locking

Most occasionally connected smart client applications use optimistic locking, which
allows multiple parties to access and operate on the same data concurrently, with the
assumption that the changes made to the data between the various parties will not
conflict. Optimistic locking allows high concurrency access to data, at the expense of
reduced data integrity. If conflicts occur, you need a strategy for dealing with them.

In most offline scenarios you need to use optimistic locking. Therefore, you must
expect data conflicts to occur, and you must reconcile them when they do.

Tracking Unconfirmed or Tentative Data
As your users work offline, any data they have changed is not confirmed as a change
on the server. Only after the data has been merged with the server and there are no
conflicts can the data truly be considered confirmed. It is important to keep track of
unconfirmed data. When the data has been confirmed, it can be marked as such and
used appropriately.

You may want to display unconfirmed data in your application’s user interface in a
different color or font so that the user is aware of its tentative nature. Generally, your
applications should not allow data to be used in more than one task until the data
has been confirmed. This prevents unconfirmed data from spilling over into other
activities that require confirmed data. Using confirmed data is not a guarantee that
there will not be a conflict, but at least the application will be aware that at one time
the data was confirmed and has been subsequently changed by someone.

Handling Stale Data
Even if data has not changed, it can cease to be correct because it is no longer current.
This data is known as stale data. As you design your smart-client applications, you
need to determine how to deal with stale data and how to prevent your smart clients
from using stale data. This is particularly important for occasionally connected smart
clients because data may be current when a client first goes offline, but may become
stale before a client goes online again. Additionally, data that is current on the client
could be stale by the time it reaches the server. For example, a salesperson could
create an order for various items on a Friday using valid data, but if he or she doesn’t
submit the order to the server until the following Monday, the cost of those items
could have changed.

68 Smart Client Architecture and Design Guide

Note: If a service request is queued and is ready to be sent when your application goes back online,
the chances that the request may encounter a data conflict or exception increase the longer that the
request is queued. For example, if you queue a service request that contains an order for a number
of items and you don’t send the request for a long time, the items you order may be discontinued
or sold out.

There are a number of techniques you can use to handle stale data. You can use
metadata to describe the validity of data and show when the data will expire. This
can prevent stale data being passed to the client.

At the server, you may choose to check any data from the client to determine if it
is stale before you allow it to merge with the data on the server. If the data is stale,
you could make sure that the client updates its reference data before resubmitting
the data to the server.

The risk of stale data is greater with occasionally connected applications than with
always connected applications. For this reason, your smart client applications will
often perform additional validation steps to ensure that the data is valid. By adding
extra validation into the system, you can also make sure your services are more
tolerant of stale data, and in some cases you may be able to automatically handle
the reconciliation on the server (that is, map the transaction to the new account).

Sometimes, stale messages are unavoidable. How you deal with stale data should
be predicated on the rules of the business you are modeling. In some instances, stale
data is acceptable. For example, suppose that an order is submitted for a particular
item in an online catalog. The item has a catalog number, which has become stale
because the online catalog changed. However, the item is still available and has not
changed, the catalog number change has no effect on the system, and the correct
order is generated.

On the other hand, if you are performing a monetary transaction between two
accounts and one of the accounts has been closed, you cannot perform the
transaction. Here the staleness of the data does matter.

A good general rule is to have business objects handle stale data situations for you.
Your business objects can validate that data is current, and if it is stale, either do
nothing, reconcile the stale data with equivalent current data, pass the information
back to the client to be updated, or use business rules to automate an appropriate
response.

Reconciliation of stale data may occur on the client, the server, or both. Handling
reconciliation on the server allows your application to readily detect a conflict.
Handling reconciliation on the client offloads some of the responsibility to the user
or administrator who may be required to manually resolve any conflicts.

 Chapter 4: Occasionally Connected Smart Clients 69

There is no one best way to handle stale data. Your business rules may dictate that
the server is the best place to handle stale data if the client cannot resolve the conflict.
If the server does not have enough information to automatically handle the situation,
you may need to require that the client clean up its data before synchronizing with
the server. Conversely, you may decide that stale data is perfectly fine for your
application, in which case you have nothing to worry about.

Reconciling Conflicts
As you examine the data reconciliation requirements of your organization, you
should consider the way your organization functions. In some cases, conflicts are
unlikely to occur because different individuals are responsible for different elements
of data. In other cases, conflicts will occur more frequently, and you must ensure that
you have mechanisms in place to deal with them.

No matter what precautions you take, it is likely that a client will submit data to a
network service that results in a business rule violation or data conflict. When a
conflict does occur, the remote service should provide as much detail about the data
conflict as possible. In some cases, it may be that the data conflict is not a major issue
and can be handled automatically by the application or server. For example, imagine
a customer relationship management (CRM) system where the user changes a
customer’s phone number. When the change is updated on the server, it is discovered
that another user has also changed the phone number. You may choose to design
your system so that the latest change always takes precedence, or you may want
to send the conflict to an administrator. If the administrator knows who made the
changes and when, he or she can then make a decision as to which one to keep.
The important thing is that the server and application provide enough detailed
information to enable automatic handling or to provide a user or administrator
with enough information so that he or she can reconcile the conflict.

Data reconciliation can be a complicated and scenario-dependent problem. Every
business and every application will have slightly different rules, requirements, and
assumptions. However you have three general options for data reconciliation:
● Automatically reconciling data on the server
● Custom reconciliation on the client
● Third-party reconciliation

It is useful to look at each of these in turn.

70 Smart Client Architecture and Design Guide

Automatically Reconciling Data on the Server

In some cases, you can design your application so that the server uses business rules
and automated processes to handle conflicts, without affecting the client. You can
ensure that the latest change always takes precedence, merge the two elements of
data, or employ more complex business logic.

Handling conflicts on the server is good for usability and saves the user from
becoming deeply involved or inconvenienced by the reconciliation process. You
should always keep the client informed about any reconciliation action taken; for
example, by returning a reconciliation report to the client, explaining the conflict
and how it was resolved. This allows the client to keep its local data consistent and
informs the user of the reconciliation outcome.

For example, suppose that an application allows users to enter order information
for items in a catalogue that is cached locally. If the user orders an item that has been
discontinued but replaced with a newer but similar model, the order service may
choose to replace the original item with the new one. The client is then informed
of the change so that it can modify its local state appropriately.

Custom Reconciliation on the Client

In some cases, the client is the best place to perform reconciliation because it knows
more about the context of the original request. The application may be able to resolve
the conflict automatically. In other cases, the user or an administrator must determine
how a conflict is to be resolved.

To allow effective client-side reconciliation, the service should send the client enough
data to permit the client to make an intelligent decision about how the conflict can be
resolved. The exact details of the conflict should be reported back to the client so that
it or the user or an administrator can determine the best way to resolve the problem.

Third-Party Reconciliation

In some cases, you may want a third party to reconcile any data conflicts. For
example, an administrator or supervisor can be required to reconcile important data
conflicts. They could be the only users with the authority to determine the right
course of action. In this case, the client needs to be informed that the decision is
pending. The client may be able to continue by using tentative values, but often it
will have to wait until the underlying conflict has been resolved. When the conflict
is resolved, the client is informed. Alternatively, the client can poll periodically to
determine the status, and then continue when it receives the reconciled value.

 Chapter 4: Occasionally Connected Smart Clients 71

Interacting with CRUD-Like Web Services
Many Web services are created with Create, Read, Update, Delete (CRUD)–like
interfaces. This section covers several strategies for creating occasionally connected
applications that consume such services.

Create
Creating records should be a relatively simple task in a CRUD Web service, provided
that you manage the creation of records correctly. The most important thing is to
uniquely identify each record that is created. In most situations, you can do this by
using a unique identifier as the primary key on your records. Then, even if two
seemingly identical records are created on separate clients, the records will be seen
as different when merge replication occurs.

Note: In some cases, you may not want the records to be treated as unique. In such cases, you can
generate an exception when the two records conflict.

There are several methods you can use to create unique identifiers on an offline
client. These include:
● Sending the record as a data transfer object (DTO) with no unique ID and allowing

the server to assign the ID.
● Using a globally unique identifier (GUID) that the client can assign, such as a

System.Guid.
● Assigning a temporary ID on the client and then substituting the real ID on

the server.
● Assigning a block of unique IDs to each client.
● Using the user’s name or ID to prefix all allocated IDs and handles, and

incrementing them on the client so that they are globally unique by default.

Read
There are no data conflicts with read operations, because read operations are, by
definition, read-only. However, problems can still occur with read operations in
occasionally connected smart clients. You should cache any data that needs to be
read on the client before it goes offline. This data can become stale before the client
goes online again, leading to inaccurate data on the client and problems when
synchronization occurs with the server. For more information about dealing with
stale data, see “Handling Stale Data” earlier in this chapter.

72 Smart Client Architecture and Design Guide

Update
Data updates most frequently lead to data conflicts because multiple users may
update the same data, leading to conflict when merge replication occurs. You can use
a number of methods to minimize the occurrence of conflicts and then resolve them
when they do occur. For more information, see “Managing Data and Business Rule
Conflicts” earlier in this chapter.

Delete
Deleting a record is straightforward because a record can be deleted only once. Trying
to delete the same record twice has no effect on the system. However, there are some
things you should keep in mind when designing your application and Web service
to handle deletions. First, you should mark the records as tentatively deleted on the
client, and then queue the deletion requests on the server. This means that if the
server is unable to delete the record for some reason, the deletion can be undone
on the client.

As when you create records, you must also make sure that you refer to the records
by using a unique identifier. This ensures that you always delete the correct record
on the server.

Using a Task-Based Approach
The task-based approach uses an object to encapsulate a unit of work as a user task.
The Task object is responsible for taking care of the necessary state, service, and user
interface interactions that are required for the user to complete a specific task. The
task-based approach is particularly useful when you design and build offline-capable
smart client applications because it allows you to encapsulate the details of the offline
behavior in a single place. This allows the user interface to focus on UI-related issues,
rather than on processing logic. Typically, a single Task object encapsulates the
functionality that the user associates with a single independent unit of work. The
granularity and details of your tasks will depend on the exact application scenario.
Some examples of tasks include:
● Entering order information
● Making changes to customers contact details
● Composing and sending e-mail
● Updating order status

For each of these tasks, a Task object is instantiated and is used to guide the user
through the process, store all necessary state, interact with the user interface, and
interact with any necessary services.

 Chapter 4: Occasionally Connected Smart Clients 73

When an application is operating offline, it needs to queue up service requests and
possibly make local state changes using tentative or unconfirmed values. During
synchronization, the application needs to perform the actual service request and
possibly make further local state changes to confirm the success of the service
request. By encapsulating the details of this process within a single Task object —
which puts the service request into the queue and tracks tentative and confirmed
state changes — you can simplify the development of the application, insulate
against implementation changes, and allow all tasks to be handled in a standard way.
The Task object can provide detailed information about the state of the task through
various properties and events, including:
● Pending status. Indicates that the task is pending synchronization.
● Confirmed status. Indicates that the task has been synchronized and confirmed

as successful.
● Conflict status. Indicates that an error occurred during synchronization. Other

properties will yield details of the conflict or error.
● Completed. Indicates percentage complete or flags the task as completed.
● Task availability. Some tasks will not be available when the application is online

or offline, or if the task is part of a workflow or user interface process, it might not
be available until a prerequisite task has been completed. This property can be
bound to the enabled flags for menu items or toolbar buttons to prevent the user
from initiating inappropriate tasks.

Another benefit of the task-based approach is that it focuses the application on the
users and their tasks, which can result in a more intuitive application.

Handling Dependencies
If a user task involves more than one service request, the task needs to be handled
very carefully so that the user can complete the entire task when offline. The
challenge is that service requests are often dependent on each other. For example,
suppose that you have an application that allows vacations to be booked for
customers. To book a vacation, the application uses a number of services to
perform each part of the overall task in the following sequence:
1. Reserve a car.
2. Reserve hotel accommodations.
3. Purchase the airline tickets.
4. Send e-mail confirmation.

74 Smart Client Architecture and Design Guide

Each of these services may be implemented by different systems, perhaps even by
different companies. In a perfect world, each service request would succeed every
time so that your user could reserve the car, hotel, and airline tickets successfully and
the application could send e-mail notifying the client that the vacation was booked.
However, not all service requests are successful, and your application must be able to
resolve error conditions and manage business rules that affect how it handles the
overall task. Writing code for this kind of task is extremely challenging because each
part of the task (that is, each service request to a specific service) depends on another
part of the task.

Dependencies can themselves depend on complex business logic, which further
complicates the logic affecting the overall task. For example, your vacation booking
application may allow the vacation to be booked if a car is unavailable, provided that
the hotel and flights are reserved successfully. Dependencies between individual
service requests can be both forward and reverse dependencies:
● Forward dependencies. If, during synchronization, the first request succeeds but

a subsequent request fails, you may need to reverse the first request through a
compensating transaction. This requirement can add significant complexity to
the application.

● Reverse dependencies. If an application is operating offline and submits one
service request as part of a multi-service request task, it has to assume that the
request will be completed successfully so that it can queue subsequent requests
and not block the user from completing the task. In this case, all subsequent
requests are dependent on the success of the first request. If the first request
fails during synchronization, the application must be aware that all subsequent
requests need to be deleted or ignored.

Handling Dependencies at the Server
To reduce the complexities associated with dependencies between services requests,
the Web service should provide a single service request per user task. This allows the
user to complete a task that will be handled during the synchronization phase as a
single atomic request to the Web service. A single atomic request eliminates the need
to keep track of service request dependencies, which can significantly complicate the
client- or server-side implementation of the application.

For example, instead of writing your service interfaces as three separate steps:

BookCar()
BookHotel()
BookAirlineTickets()

You can combine them into one step:

BookVacation(Car car, Hotel hotel, Tickets airlineTickets)

 Chapter 4: Occasionally Connected Smart Clients 75

Combining steps in this manner means that, as far as the client is concerned, you
now have one atomic interaction instead of three separate ones. In the example,
the BookVacation Web service would be responsible for performing the necessary
coordination between the elements that make up the service.

Handling Dependencies at the Client
You can also keep track of service request dependencies on the client. This approach
provides significant flexibility, and allows the client to control the coordination
between any number of services. However, this approach is difficult to develop
and test. The task-based approach is a good way to keep track of service request
dependencies on the client, and provides a way to encapsulate all of the necessary
business logic and error handling in one place, which simplifies development and
testing. (For more information about the task-based approach, see “Using a Task-
Based Approach” earlier in this chapter.)

For example, the Task object used to book a vacation would know that it had to
perform three service requests. It would implement the necessary business logic
so that it could control the service requests appropriately if an error condition was
encountered. If the BookCar service call failed, it could proceed with the BookHotel
and BookAirlineTickets service calls. If the BookAirlineTickets service call failed,
it would then be responsible for canceling any hotel or car reservation by creating
a compensating transaction service request to each service. Figure 4.2 illustrates this
task-based approach.

Property and
Method Calls

Task Object/
Service Agent

Application
User Interface

Client

Events
(Fired on

UI Thread)

Task State

Car Service

Web
Service

Calls

Airline Service

Hotel Service

UI Thread Task Thread

Figure 4.2
Task-based approach to service with interdependencies

76 Smart Client Architecture and Design Guide

Using Orchestration Middleware
Sometimes the dependencies and corresponding business rules in your applications
are sufficiently complex to require some form of orchestration middleware, such as
Microsoft BizTalk® Server, which coordinates the interactions between multiple
Web services and a client application. Orchestration middleware is located in the
middle tier and provides a facade Web service to interact with the smart client.
The facade Web service presents an application-specific, appropriate interface to
the client, which allows a single Web request per user task. When a service request
is received, the orchestration service then processes the request by initiating and
coordinating calls to the necessary Web services, possibly aggregating the results
before returning them to the client. This approach provides a more scalable way
to account for the interactions between multiple Web services. BizTalk also provides
important services, such as data transformation and a business rules engine, that
can help significantly when interacting with disparate Web services or legacy systems
and in complex business scenarios. In addition, this approach provides important
availability and reliability guarantees, which help to ensure consistency between
multiple services. Figure 4.3 illustrates the use of orchestration middleware.

Property and
Method Calls

Task Object/
Service Agent

Application
User

Interface

Client Orchestration
Service

Events
(Fired on

UI Thread)

Task State

Web
Service

Calls

Facade
Service

UI Thread Task Thread

Car Service

Airline Service

Hotel Service

Figure 4.3
Orchestration middleware used to coordinate service dependencies

 Chapter 4: Occasionally Connected Smart Clients 77

Summary
Smart clients need to operate efficiently when connected and disconnected from the
network. As you design your smart clients, you need to ensure that they can function
effectively in both situations, and transition seamlessly between the two.

There are two broad strategies for designing smart client communications: service-
oriented and data-centric. When you have determined which of these to use, you
need to make some fundamental design decisions to allow your smart clients to
work offline. In most cases, the clients should be designed to use asynchronous
communication and simple network interactions. Clients will need to cache data
for use when offline, and you will need a method to handle data and business rule
conflicts when the clients go back online. In many cases, offline clients allow users to
perform a number of tasks that are dependent on one another. You will need to deal
with these dependencies in the event that one of the tasks fails when it reaches the
server. Your smart clients may also need to interact with CRUD-like Web services.

The task-based approach can dramatically simplify the process of taking applications
offline. Consider implementing this approach in your smart clients; it can also
provide you with an effective way of handling dependencies, both at the server
and at the client.

5
Security Considerations

Smart clients are distributed applications that often span several different products
and technologies. Managing security in these applications can be very challenging.
At the server, you need to adopt an approach of securing the network, the server
itself, and then the application. At the client, you should concentrate on using the
security features of the platform (including the operating system and the Microsoft®
.NET Framework), the privileged operations that the client code can perform (code
access security), and the interactions with the server platform (domain) and server
application.

Effective security depends on a defense-in-depth approach. As you secure your smart
clients, it is very important to consider all aspects of security, including the following:
● Authentication. This uniquely identifies the user of the client application so that

only approved users can access all or part of the application.
● Authorization. This determines the operations that the uniquely identified user

can perform. These operations could be tasks or operations on resources to which
the authenticated user is granted access.

● Data validation. This ensures that only appropriate and valid data is accepted by
the application. If you permit any user input without first validating the data, an
attacker can compromise the application by injecting malicious input.

● Protecting sensitive data. This means ensuring that sensitive data (such as
passwords or confidential business data) stored and transmitted by the
application is secure. Encrypting sensitive data ensures that data is not available
in plain text; depending on choice of algorithm, it can also ensure that the
information is not tampered with to maintain integrity.

● Auditing and logging. This involves keeping a record of events and user actions.
You should consider logging key user actions or activities on the server or logging
them securely on the client, because logs on client computers could be tampered
or cleared.

80 Smart Client Architecture and Design Guide

● Exception management. This ensures that the application deals with exceptions
appropriately, failing gracefully and returning user-friendly, non-sensitive
information. Exception details can be logged to the event log or application log.

● Change and configuration management. This ensures that you keep track of the
configuration of your IT environment and any changes that occur to it. Doing so
allows you to see if unauthorized change occurs and determine the security
implications of any authorized changes.

This chapter addresses in detail some of the key security challenges you will face as
you design your smart client applications, specifically focusing on authentication,
authorization, data validation, and securing sensitive data. The chapter also covers
code access security, a key technology in the .NET Framework to manage security at
code level rather than user level.

Another important aspect you need to consider when examining smart client security
is how your smart client is deployed. For more information about the security issues
affecting deployment, see Chapter 7, “Deploying and Updating Smart Client
Applications.”

Note: Any code you use in your application should be analyzed with FxCop. This tool allows you
to check managed code assemblies for conformance to the .NET Framework design guidelines,
including a base level of security compliance. FxCop can be downloaded off the GotDotNet site
at http://www.gotdotnet.com/team/fxcop/.

Authentication
Authentication is the process of uniquely identifying a user by verifying his or her
credentials. User authentication may be required when the user attempts to run or
install the application or when the application makes a connection to a remote service
or accesses locally held data.

This section examines some authentication scenarios common to smart clients, covers
some of the different ways in which you can make authenticated network calls, and
discusses how to gather user credentials and validate those credentials when offline.

Smart Client Authentication Scenarios
Depending on the style and functionality of your smart client application, you
may need to authenticate the user at one or more points during the user’s interaction
with the application. There are four points at which you might choose to authenticate
the user:
● When the application is installed
● When the application is run
● When the user accesses sensitive locally held data
● When the user accesses external services over the network

http://www.gotdotnet.com/team/fxcop/

 Chapter 5: Security Considerations 81

Installation
If your application is centrally deployed (for example, using no-touch deployment),
you may need to secure the application on the Web server so that it can be installed
only by authorized users. These users must first be authenticated by the Web server,
which checks to see if they are authorized to access the application and download it
to their client computers.

Securing access to a no-touch deployed smart client application is similar to securing
any other Web server located artifact, such as a Web page. Microsoft Internet
Information Services (IIS) provides a number of authentication mechanisms, such as
Integrated Windows, digest, or basic authentication.

Note: Digest and basic authentication are not suitable if you are using no-touch deployment and your
application uses a configuration file to store its configuration settings, because the configuration file
cannot be downloaded automatically by the .NET Framework using these mechanisms.

After you select the appropriate authentication mechanism, and IIS can identify the
user from his or her credentials, you can secure the application and its dependent
assemblies by setting file permissions on the application and assembly files. To ease
the management of large numbers of users, you may consider providing access to
a Microsoft Windows® group (for instance, SmartClientAppUsers) and putting
individual users into that group.

All users that you need to authenticate must have a Windows identity on the server
so that IIS can secure access to the application and its assemblies, but they do not
necessarily need to be logged on to their client computers using this identity. If the
user’s logon account is not known on the server side, the user is prompted for a user
name and password when he or she clicks the link to the application’s executable file.

If you use Integrated Windows authentication, the credentials of the logged on user
are automatically used to try and gain access to the application. This allows for
seamless but secure access when the user is logged on with an identity common to
both the client and server.

Authenticated Application Access
Authenticating users to install an application ensures that only authenticated and
authorized users are able to run your application from a central location. However,
because the application and its dependent artifacts may have been cached on the
client computer, you cannot rely on this mechanism to authenticate the user every
time the application runs. In this case, or when the application is intentionally
deployed locally, you need to carefully consider how user authentication is to be
carried out by your application. You may need to authenticate users each time they
run the application, particularly if your application provides sensitive functionality,
or if you need to be able to revoke a user’s authorization to run the application at
any time.

82 Smart Client Architecture and Design Guide

In cases where the user is logged on to the client computer using an identity that is
common to both the client and server, you may be able to rely on the fact that the
user was able to log on to the client computer as sufficient authentication to run
the application. This approach allows you to use the Microsoft Windows operating
system to provide user authentication, obviating the need to implement it in your
code. Also, because Windows can cache user credentials when offline, you do not
need to cache them yourself.

For client computers for which you do not have any control over user access,
such as those outside your organization’s intranet, you may need to adopt a custom
authentication mechanism to gather the user’s credentials and authenticate them
against a remote security authority. If the application is capable of operating offline,
you need to cache valid credentials on the client so you can reauthenticate the user
against them when he or she starts the application. You should enforce online
reauthentication periodically to prevent unlimited use of such applications.

Authenticated Local Data Access
A smart client application often caches data that it has obtained from a remote service
(for example, to improve responsiveness or to allow offline capabilities). If the data is
sensitive, you might need to consider authenticating the user before granting access
to it. In this case, you might choose to allow unauthenticated users to run the
application but require users to be fully authenticated and authorized before
giving them access to sensitive data.

Note: It is important to ensure that only data that the user is authorized to access be cached locally.
If the data is sensitive, you also need to ensure that adequate measures are taken to guarantee its
security. For details, see “Handling Sensitive Data” later in this chapter.

Locally held data should be held in a secure location and encrypted. Regardless of
how users are authenticated, you typically want to use their credentials in some way
to access and decrypt the data.

You may be able to use the default credentials that were used to log on to the client
computer, or you may need to obtain custom credentials to authenticate the user
against a remote security authority. The former possibility is most suitable for
applications running in an intranet situation, while the latter is suitable for
applications running in an Internet or extranet situation where the users are typically
not in the same domain as the remote services they access. One of the benefits of
using Integrated Windows authentication is that the operating system authenticates
the user, secures the application and local data, and can cache the user’s credentials
when the user is offline.

For more information about caching sensitive data locally, see “Handing Sensitive
Data” later in this chapter.

 Chapter 5: Security Considerations 83

Authenticated Network Access
You might choose to enable anonymous access to the application and allow any user
to download and run it. However, after the application is running on the client, it
often needs to access remote services over the network, such as a Web service, to
obtain data and services.

Access to network data and services often needs to be secured to prevent
unauthorized access. There are many ways in which you might secure remote service
access, but usually you need to pass the user’s credentials to the remote service so
that it can perform user authentication.

Authenticating users when they access remote services over the network is an
important issue. Some of the options for ensuring authenticated network service calls
are described more fully in “Network Access Authentication Types” later in this
chapter.

Choosing the Right Authentication Model
The previous section described the four stages at which you might choose to
authenticate the user. You might choose to authenticate the user at one or more of
these points, depending on the nature of your application and its functionality. It is
important to choose the right point to help ensure that your application and data
remain secure, while minimizing any impact on the usability of your application.

If your application is centrally deployed (for example, if it is deployed using no-touch
deployment or is deployed to a file share), you might choose to restrict access to users
who are authorized. If you want your application to be available to anyone who
wants to use it, authenticating the user when the application is installed is not
required.

Client computers are generally not physically secure and may even be publicly
accessible. If this is the case, and your application provides sensitive functionality,
you often need to authenticate the user when the application runs. If your application
provides generic functionality that is available to anonymous users, you do not need
to authenticate the user at this point. However, you might choose to provide a
portion of your application’s functionality to anonymous users but require
authentication before allowing them to access more restricted functionality.

Securing access to locally held sensitive data is critically important. If your
application is deployed to a device that is not physically secure or is accessible
to the public, sensitive data should be secured and should be accessible only by
authenticated and authorized users. Your application might provide generic
functionality to anonymous users but require user authentication when users
try to access the sensitive data.

84 Smart Client Architecture and Design Guide

Using Integrated Windows authentication also has benefits when the application
runs offline. In this case, Windows caches the user credentials so that the user is
authenticated when he or she logs on to the offline client computer. This behavior
obviates the need for your client to authenticate the user if you need user
authentication when the application runs or accesses locally held sensitive data.

Network Access Authentication Types
There are many different technologies that you can use to authenticate users when
accessing remote services, including:
● Integrated Windows authentication
● HTTP basic authentication
● HTTP digest authentication
● Certificate-based authentication
● Web Services Enhancements (WSE)-based authentication
● Custom authentication

Integrated Windows Authentication
With Integrated Windows authentication, the user is authenticated by logging on to
his or her computer using a valid Windows account. The credentials could be a local
account (an account local to the computer) or a domain account (a valid member of a
Windows domain). The identity established during logon can be transparently used
by your application to access resources for the entire duration of the user’s session.
This means that your applications can provide seamless access to network resources,
such as Web services, in a secure way without having to prompt the user for
additional, or repeated, credentials.

Note: Access to the network resources is seamless only if the network resources also use
Integrated Windows authentication.

Integrated Windows authentication uses one of two authentication protocols:
Kerberos or NTLM. These technologies do not pass a user name and password
combination across the network to authenticate or validate the user. As a result,
your application or infrastructure does not have to provide additional security
to manage credentials during transit.

Client applications that rely on Windows security use an implementation of the
IIdentity interface named WindowsIdentity.

Note: The .NET Framework also provides the closely related IPrincipal interface. For more details
about IIdentity and IPrincipal interfaces, see “Authorization” later in this chapter.

 Chapter 5: Security Considerations 85

Web Services that Use Integrated Windows Authentication

For Web services that are configured for Integrated Windows authentication, the
client application can supply currently logged-on user credentials for authentication
purposes before making Web service calls. When you add a reference to a Web
service in your application from within the Microsoft Visual Studio® .NET
development system, a proxy class is automatically generated and added to your
project to programmatically access the Web service. The following code illustrates
how to set the credentials of the user who is currently logged on.

MyService service = new MyService(); // A proxy for a web service.
service.Credentials = CredentialCache.DefaultCredentials;
service.SomeServiceMethod(); // Call the web service.

In this case, the DefaultCredentials uses the security context in which the application
is running, which is usually the Windows credentials (user name, password, and
domain) of the user running the application.

HTTP Basic Authentication
HTTP basic authentication is provided by IIS. With basic authentication, IIS prompts
users for a valid Windows account and password. This combination is passed from
the client to the server as encoded plain text and is used to authenticate the user at
the Web server.

Note: To secure basic authentication, you need to secure the communication channel between the
client and the server (for example, by enabling Secure Sockets Layer [SSL] on the server) to ensure
that the user name/password combination is encrypted and cannot be tampered with or intercepted
when in transit. You also need to secure the passwords located on the server. However, SSL can
secure communication only between two defined endpoints. If you require secure communication
between more than two endpoints, you need to use message-based security.

Web Services that Use Basic Authentication

For a client application interacting with a Web service configured for basic
authentication, the client can accept valid user credentials using a logon dialog box
and use it for authentication. The following code illustrates how to set the credentials
of the user to the Web service proxy expecting basic authentication.

CredentialCache cache = new CredentialCache();
cache.Add(new Uri(service.Url), // Web service URL.
 "Basic", // Basic Authentication.
 new NetworkCredential(userName, password, domain));
service.Credentials = cache;

In this case, userName, password, and domain are accepted as part of the logon
dialog box.

86 Smart Client Architecture and Design Guide

HTTP Digest Authentication
HTTP digest authentication offers the same features as HTTP basic authentication
but involves a different way of transmitting the authentication credentials. The
authentication credentials are converted in a one-way process referred to as hashing.
The result of this process is called a hash, or message digest, and it is not feasible to
decrypt it using current technologies.

Digest authentication occurs in the following way:
1. The server sends the browser certain information that will be used in the

authentication process.
2. The browser adds this information to its user name and password, along with

some other information, and hashes it. The additional information helps to
prevent someone from copying the hash value and using it over again.

3. The resulting hash is sent over the network to the server along with the additional
information in clear text.

4. The server adds the additional information to a plain text copy it has of the client’s
password and hashes all of the information.

5. The server compares the hash value it received with the one it just made.
6. Access is granted only if the two values are identical.

The additional information is added to the password before hashing so that nobody
can capture the password hash and use it to impersonate the true client. Values are
added that help to identify the client, the client’s computer, and the realm, or domain,
the client belongs to. A time stamp is also added to prevent a client from using a
password after the password has been revoked.

Because digest authentication sends the password over the network in hashed
form, it is clearly preferable to basic authentication, especially if you use basic
authentication without encrypting the communication channel. Therefore, you
should use digest authentication instead of basic authentication whenever possible.

Note: As with basic authentication, digest authentication completes only if the domain server for
which a request is made has a plain-text copy of the requesting user’s password. Because the
domain controller has plain-text copies of passwords, you must ensure that this server is secured
from both physical and network attacks.

 Chapter 5: Security Considerations 87

Certificate-based Authentication
Certificates can enable client and server applications to authenticate each other or to
establish a secure connection using digital keys installed on the computer. The client
application can use client certificates to identify itself to the server, just as the server
can identify itself to the client using a server certificate. A mutually trusted third
party, called a certificate authority, can confirm the identity of the certificates. Client
certificates can be mapped to Microsoft Windows accounts in Microsoft Active
Directory® directory service.

You can set up a site so that users without certificates are logged on as guests, but
users with certificates are logged on as the user to which his or her certificate maps.
You can then customize the site based on the certificate.

If you need to authenticate individual users, you can use a technique known as one-
to-one mapping where a certificate is mapped to an individual account. If you need
to authenticate all of the users from a particular group or organization, you can use
many-to-one mapping where, for example, any certificate containing a common
company name is mapped to a single account.

In certificate-based authentication, client applications use certificates that can be
authenticated by Web services. In this case, the client application digitally signs the
SOAP messages using X.509 certificates to ensure that the message is from a trusted
source and is not altered during transit before it reaches the designated Web service.

One major consideration of certificate-based authentication is how to manage
situations when a certificate should no longer be valid. For example, if an employee
uses a certificate to be authenticated and that employee is then dismissed, the
certificate should no longer allow the user to access resources. Therefore, it is
important that your certificate security infrastructure includes the administration
of certificate revocation lists. These lists are present on the server and should be
checked each time the client connects to a network resource.

Server-based revocation lists cannot be checked when a smart client goes offline,
so there is potential for a user to access resources locally on the client that he or she
should not be able to access at the server. To help get around this problem, you may
choose to have relatively short lease times on your client certificates. Short lease times
force the client to regularly connect to a certificate server and verify that the
certificate has not been revoked prior to renewing the lease and allowing connection
to the server side of the application.

For more information, see “About Certificates” at http://www.microsoft.com/resources
/documentation/windowsserv/2003/standard/proddocs/en-us/sec_auth_certabout.asp.

http://www.microsoft.com/resources/documentation/windowsserv/2003/standard/proddocs/en-us/sec_auth_certabout.asp
http://www.microsoft.com/resources/documentation/windowsserv/2003/standard/proddocs/en-us/sec_auth_certabout.asp

88 Smart Client Architecture and Design Guide

WSE-based Authentication
You can programmatically sign the SOAP messages to a Web service using Web
Services Enhancements version 2.0. WSE 2.0 is an implementation that supports
emerging Web services standards such as WS-Security, WS-SecureConversation,
WS-Trust, WS-Policy, WS-Addressing, WS-Referral, and WS-Attachments and
Direct Internet Message Encapsulation (DIME). WSE provides a programming
model to implement various specifications that it supports.

Client applications that use WSE can use one of the Find methods (for example,
FindCertificateByHash or FindCertificateByKeyIdentifier) on the
X509CertificateStore class to programmatically select a certificate from the store,
create a digital signature using the certificate, add it to the WS-Security SOAP header,
and call the Web service. Alternatively, the client application can also open the
certificate store of the currently logged-on user as shown in the following code
example.

X509CertificateStore store;
store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);
bool open = store.OpenRead();

For more information, see “Web Services Enhancements” at http://msdn.microsoft.com
/webservices/building/wse/default.aspx.

For more information about using client certificates, see “Signing a SOAP Message
Using an X.509 Certificate” in the WSE 2.0 documentation.

Custom Authentication
In some cases, the standard authentication options provided by Windows are not
appropriate for your applications, and you will need to design your own form of
authentication. Fortunately, the .NET Framework provides options to help you
design a custom authentication solution.

The .NET Framework supports an implementation of IIdentity, called
GenericIdentity. You can use GenericIdentity, or create your own custom identity
class. Designing a custom authentication solution can be difficult, because you have
to take your own steps to ensure that the method is secure. You may also have to
maintain a separate store for your identities.

http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx

 Chapter 5: Security Considerations 89

Gathering and Validating User Credentials
Whatever form of authentication you use, you need to gather user credentials that
can then be validated. For users that are already logged on using Integrated Windows
authentication, you may just need to gather the existing credentials, and for a custom
authentication solution, you may need to gather credentials securely through your
own logon dialog box.

Note: Do not store user credentials in your code for longer than is necessary. In particular, do not
store credentials in global variables, which provide access to them through publicly accessible
methods or properties, and do not save them to disk.

Gathering Currently Logged-On User Credentials
If you are using Integrated Windows authentication, your users log on at the start of
their Windows session. Your applications can then use this information to ensure that
they have the appropriate credentials to run.

The following code demonstrates the basic functionality.

using System.Security.Principal;

// Get principal of the currently logged in user.
WindowsPrincipal wp = new WindowsPrincipal(WindowsIdentity.GetCurrent());

// Display the current user name.
label1.Text = "User:" + wp.Identity.Name;

// Determine if user is part of a windows group.
if(wp.IsInRole("YourDomain\\YourWindowsGroup"))
{
 // Is a member.
}
else
{
 // Is not a member.
}

90 Smart Client Architecture and Design Guide

Gathering User Credentials Using a Logon Dialog Box
If you are designing your own logon dialog box to accept credentials from the
user, you need to take a number of measures to ensure that you meet the security
requirements of your organization (such as enforcing strong password policy and
having passwords expire at periodic intervals). Consider the following guidelines
when you design your logon dialog box:
● Do not blindly trust user input. If you do so, a malicious user can compromise

your application. For example, an application that uses input with no validation
to dynamically construct SQL code can be vulnerable to SQL injection attacks.

● Check for type, format, or range of input data. Consider using regular
expressions to do these checks. Using regular expressions enables you to check
for type (for example, string or integer), format (for example, enforcing password
policy requirements such as use of numbers, special characters, and a mix of
lowercase and uppercase characters), and range (for example, a user name with
a minimum of 6 characters and maximum of 25 characters).
The following code example enforces a password between 8 and 10 characters
long with a combination of uppercase, lowercase, and numeric characters.

// Validate the user supplied password.
if(!Regex.Match(textBox1.Text,
 @"^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,10}$",
 RegexOptions.None).Success)
{
 // Invalid email address.
}

● When designing a dialog box with a password field text box, ensure that the
PasswordChar property is set to a character that is displayed when text is entered
in the control, as shown in the following example.

// The password character is set to asterisk.
textBox1.PasswordChar = '*';

 Chapter 5: Security Considerations 91

Authentication Guidelines
When designing authentication for your applications, you should consider the
following guidelines:
● Determine where authentication needs to occur during the user’s interaction with

your application.
● Consider using Integrated Windows authentication to authenticate users as they

log on to the client and before they can access your application, its data, and any
remote service.

● If your application is centrally deployed and you need to restrict access to only
authorized users, authenticate users when the application runs using one of the
authentication mechanisms provided by IIS.

● If your application provides sensitive functionality or access to sensitive locally
held data, ensure that users are properly authenticated before allowing access.

● If your application requires custom authentication, ensure your application
enforces a strong user name and password policy. As a general practice, you
should require a minimum of 8 characters and a mixture of uppercase and
lowercase characters, numbers, and special characters.

● Require user authentication for access to remote services over the network if they
provide sensitive functionality or access to sensitive data.

● Ensure that user credentials are not transmitted unprotected over the network.
Some forms of authentication avoid passing user credentials over the network
at all, but if they must be transmitted, you should ensure that they are encrypted,
or sent over a secure connection.

For more information, see “Authentication” in “Chapter 4 — Design Guidelines
for Secure Web Applications” of Improving Web Application Security: Threats and
Countermeasures at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/THCMCh04.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp

92 Smart Client Architecture and Design Guide

Authorization
After users are authenticated, you can determine what they have access to within the
system by using authorization. Authorization is confirmation that an authenticated
user has permission to perform an operation. Authorization governs the resources
(for example, files and databases) that an authenticated user can access and the
operations (for example, changing passwords or deleting files) that an authenticated
user can perform. Users who are not authenticated (that is, anonymous users) are not
able to be specifically authorized and need to be assigned a default set of
permissions.

A number of factors determine exactly how you perform authorization in your
environment. You need to determine whether to manage authorization based on
application functionality or system resources. You need to decide whether to perform
fine-grained authorization within methods or to perform checks at the method level.
You also need to determine where the user information required for authorization is
stored (for example, in Active Directory or a Microsoft SQL Server™ database). If you
are going to allow your smart clients to work offline, you need a strategy for
authorization of offline clients.

The .NET Framework provides the IPrincipal interface, which is used in conjunction
with the IIdentity interface to define properties and methods to manage the security
context of running code. Two implementations of this interface are also provided:
WindowsPrincipal and GenericPrincipal. Client applications that use Integrated
Windows authentication use WindowsPrincipal, whereas client applications that
use custom authentication use GenericPrincipal.

Types of Authorization
Two methods of authorization are commonly used in the Windows operating system:
resource-based authorization and role-based authorization. Resource-based
authorization relies on access control lists (ACLs), and role-based authorization
performs authorization based on user roles.

Resource-based Authorization
For resource-based authorization, you can attach discretionary access control lists
(DACLs) to securable objects. The system then makes access decisions by comparing
the group memberships in a token to the contents of the ACL to determine whether
the user has the requested access. The ACL model is ideal for many types of
applications. However, it is not appropriate for all situations. For example, you may
need to make access decisions based on business logic or on nonpersistent objects
that are created when needed.

 Chapter 5: Security Considerations 93

Role-based Authorization
Role-based authorization allows you to associate users and groups with the
permissions that they need to do their jobs. When a user or group is added to a role,
the user or group automatically inherits the various security permissions. These
could be permissions to perform actions or to access various resources. Figure 5.1
shows the relationship between roles and permissions in role-based authorization.

Figure 5.1
Role-based authorization

In Microsoft Windows 2000 Server Service Pack 4 (SP4) and Windows Server™ 2003
operating system, role-based authorization is generally administered using
Authorization Manager. Authorization Manager is a set of COM-based run-time
interfaces, along with a Microsoft Management Console (MMC) snap-in for
configuration. Developers can use Authorization Manager to ensure that applications
can manage and verify client requests to perform application operations, and
application administrators can use it to manage user roles and permissions. With
Authorization Manager, you can aggregate low-level operations into groups called
Tasks and manage authorization at that level. It also allows you to run custom
authorization logic before and after authorization.

One significant advantage of Authorization Manager is that it further abstracts the
authorization store from the application requiring authorization, meaning that
developers can always communicate with Authorization Manager, regardless of
whether the store is in Active Directory or is file-based.

94 Smart Client Architecture and Design Guide

Adding Authorization Capabilities to Your Application
The .NET Framework provides a number of options for adding authorization
capabilities to your application. These include:
● Performing declarative demands using the PrincipalPermissionAttribute
● Performing imperative demands using the PrincipalPermission object
● Performing role checks using the IsInRole method
● Performing role checks for custom authentication

Performing Declarative Demands Using the PrincipalPermissionAttribute
You can place demands at the class level, or at the member level on individual
methods, properties, or events. If you place a declarative demand at both the class
and member level, the declarative demand on the member overrides (or replaces)
the demand at the class level.

The following code example shows a declarative demand for the
PrincipalPermission object.

// Declarative example.
[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Teller")]
void SomeTellerOnlyMethod()
{
}

Performing Imperative Demands Using the PrincipalPermission Object
You can perform imperative demands by programmatically calling the Demand
method of the PrincipalPermission object, as shown in the following code example.

// Programmatic example.
public SomeMethod()
{
 PrincipalPermission permCheck = new PrincipalPermission(null, "Teller");
 permCheck.Demand();
 // Only Tellers can execute the following code.
 // Non members of the Teller role result in a security exception.
 . . .
}

One advantage of calling the method programmatically is that you can determine if
the principal is in more than one role. The .NET Framework does not allow you to do
this declaratively. The following code example shows how to perform the check.

// Using PrincipalPermission.
PrincipalPermission permCheckTellers = new PrincipalPermission(null, "Teller");
permCheckTellers.Demand();
PrincipalPermission permCheckMgr = new PrincipalPermission(null, "Manager");
permCheckMgr.Demand();

 Chapter 5: Security Considerations 95

Performing Role Checks Using the IsInRole Method
You may choose to access the values of the principal object directly and perform
checks without a PrincipalPermission object. In this case, you can read the values of
the current thread’s principal or use the IsInRole method to perform authorization,
as shown in the following code example.

// Using IsInRole.
if (Thread.CurrentPrincipal.IsInRole("Teller") &&
 Thread.CurrentPrincipal.IsInRole("Manager"))
{
 // Perform privileged operation.
}

Performing Role Checks for Custom Authentication
If your application is not Windows-based, you can programmatically populate a
GenericPrincipal object with a set of roles obtained from a custom authentication
data store such as a SQL Server database, as shown in the following code example.

GenericIdentity userIdentity = new GenericIdentity("Bob");
// Typically role names would be retrieved from a custom data store.
string[] roles = new String[]{ "Manager", "Teller" };
GenericPrincipal userPrincipal = new GenericPrincipal(userIdentity, roles);
if (userPrincipal.IsInRole("Teller"))
{
 // Perform privileged operation.
}

Authorization Guidelines
Authorization is critical to control user access to application functionality and
resources accessed. Improper or weak authorization leads to information disclosure
and data tampering. Consider the following authorization guidelines:
● Use multiple gatekeepers where possible to enforce authorization checks when

accessing resources or performing operations. Using client checks combined
with checks on the server provides defense in depth to prevent an attack from
a malicious user who manages to bypass one of the gatekeepers. Common
gatekeepers on the server include IIS Web permissions, NTFS file system
permissions, Web service file authorization (which applies only with Windows
authentication), and principal permission demands.

96 Smart Client Architecture and Design Guide

● Authorize access to system resources using the security context of the user.
You can use role-based authorization to authorize access based on user identity
and role membership. Integrated Windows authentication with Windows ACLs
on the secured resources (such as files or the registry) determines whether the
caller is allowed to access the resource. For assemblies, you can authorize calling
code based on evidence, such as an assembly’s strong name or location.

● Ensure that roles are defined with enough granularity to adequately separate
privileges. Avoid granting elevated privileges just to satisfy the requirements of
certain users; instead, consider adding new roles to meet those requirements.

● Use declarative demands rather than imperative demands where possible.
Declarative demands provide or deny access to all of the method’s functionality.
They also work much better with security tools and help with security audits,
because tools are able to access these demands by examining the application.

● If you need to determine if the principal is in more than one role, consider
imperative checks using IsInRole method. The .NET Framework version 1.1
does not allow AND checks to be performed declaratively; however, they can be
performed programmatically inside the method as shown in the following code
example.

// Checking for multiple roles.
if (Thread.CurrentPrincipal.IsInRole("Teller") &&
 Thread.CurrentPrincipal.IsInRole("Manager"))
{
 // Perform privileged operation.
}

● Use code access security to authorize calling code access to privileged resources
or operations, based on evidence, such as an assembly’s strong name or location.
For more information, see “Code Access Security” later in this chapter.

Authorizing Functionality When the Client Is Offline
When users are connected to the network, they can be authorized directly against a
network authorization store, but when they are not, they may still need to be
authorized.

Any form of authorization is only as strong as the authentication mechanism used.
If you allow anonymous authentication, you should be particularly careful about
what functionality you allow users to access and generally should not authorize users
to access system resources.

If you are authenticating users to use an application, you can let Windows act as the
sole gatekeeper to determine which resources are available for the logged-on user
profile. In this case, the user is often allowed to access local system resources.

 Chapter 5: Security Considerations 97

You may choose to create different versions of the same application for different roles.
When the user is connected to the network, he or she is allowed to install only the
version of the application tailored to his or her role. Then, when the user runs the
application offline, the correct functionality is automatically provided without the
application being connected.

The Authorization and Profile Application Block
Microsoft offers an application block that provides infrastructure to simplify the
inclusion of authorization functionality into your application.

The Authorization and Profile Application Block provides an infrastructure for
role-based authorization and access to profile information. The block allows you to:
● Authorize a user of an application or system.
● Use multiple authorization storage providers.
● Plug in business rules for action validation.
● Map multiple identities to a single user, extending the idea of an identity to

include authentication methods.
● Access profile information that can be stored in multiple profile stores.

For more information, see Authorization and Profile Application Block at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/authpro.asp.

Input Validation
Applications with poor input validation can be compromised by malicious input
by an attacker. Validating user input is one of the first lines of defense for your
application. Consider the following input validation guidelines for your smart
client application:
● Ensure that your smart client application validates all input before processing

or passing it to downstream resources and assemblies.
● Perform thorough validation of user input data if you are passing it to an

unmanaged API. Doing so helps to prevent buffer overflows. You should limit
user input of data that is passed to unmanaged APIs.

● Always validate data obtained from all external sources, such as Web sites and
Web services.

● Never rely on client-side validation of data that is passed to your Web service
or Web application. Validate data on the client and then validate it again on the
server to prevent malicious input that bypasses client-side validation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/authpro.asp

98 Smart Client Architecture and Design Guide

● Never allow users to enter SQL queries directly. Always provide prepackaged
or parameterized queries that are thoroughly reviewed for security problems.
Allowing users to enter SQL queries directly introduces the possibility of SQL
injection attacks.

● Constrain and validate user input for known correct values or patterns, rather
than for incorrect input. It is easier to check for a finite list of known values than
to check for an infinite list of unknown malicious input types. You can either reject
the bad input or sanitize it (that is, strip out potentially unsafe characters) before
acting on it.

● Constrain input by validating it for type, length, format, and range. One way
to do this is use to regular expressions (available from the
System.Text.RegularExpressions namespace) to validate user input.

● Reject unknown bad data and then sanitize input. If your application needs to
accept some user input in free form (for example, comments in a text box), you can
sanitize the input as shown in the following example.

private string SanitizeInput(string input)
{
 // Example list of characters to remove from input.
 Regex badCharReplace = new Regex(@"([<>""'%;()&])");
 string goodChars = badCharReplace.Replace(input, "");
 return goodChars;
}

● Consider centralizing your validation routines to reduce development effort and
aid future maintenance.

For more information, see “Input Validation” in “Chapter 4 — Design Guidelines
for Secure Web Applications” of Improving Web Application Security: Threats and
Countermeasures at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/THCMCh04.asp.

Handling Sensitive Data
If you are accustomed to designing Web applications, you understand the importance
of securing stored data and data that is in transit. The data you store on a Web server
is typically written to a physically secure location that is already well protected to
prevent it from being attacked. In smart client applications, you also need to closely
consider the data that resides on the client. If such data is sensitive, it is important
that it is handled appropriately to ensure its security. To protect data in transit, you
can secure the transport layer using SSL and securing the message contents using
WS-Security or Message Queuing encryption tools.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh04.asp

 Chapter 5: Security Considerations 99

Only data to which the user is authorized access should be made available to the
client application. If the client application can be used by more than one person on a
single computer, the data associated with each individual user should be considered
sensitive data, and steps should be taken to ensure that only authorized users can
access it.

Sensitive data includes any data that an attacker may find useful to access or modify,
either because the information is confidential, or because it can help in an attack.
Sensitive data may be data that the server provides to the client, but it can also
include application configuration files, local databases, or registry information.

In general, you should try to ensure that sensitive data is not cached locally.
However, in the case of a smart client application, you may need to cache this data
(for example, to allow for occasionally connected operation by saving the data to a
local store for later use).

Note: In some cases, sensitive data may be sent to disk as a result of paging from memory.
Therefore, you should also consider data that is present in memory when determining what data
needs to be encrypted.

Determining Which Data to Store on the Client
By definition, users, and therefore potential attackers, have physical access to clients.
Given enough time, attackers are often able to obtain sufficient administrative access
to access almost any data, so you should carefully consider what data should be
persisted on the client. As a general rule, you should make authorization decisions
on the server, so that the only data you pass from the server to the client is data
that the user is allowed to access. In addition to improving performance, making
authorization decisions on the server also ensures that the data is not available on
the client for a potential attacker to access.

You should never store sensitive data in text-based files and should always encrypt
the data so that it can be easily accessed only by authorized users. You should avoid
using text-based configuration files to store sensitive security information, such as
passwords or database connection strings. If this information must be stored locally,
you should encrypt the information, store it in a file or registry key, and then restrict
access to that object with a DACL. Any persisted data personal to the logged-on user
must also be kept private and secure, particularly if the computer is shared between
users.

In many cases, more data is stored on the client if the application needs to run offline.
However, you should determine whether all of the data is required offline, or
whether you want to restrict the user from performing certain actions when offline,
so that you do not have to cache sensitive data locally.

100 Smart Client Architecture and Design Guide

In some cases, if data is confidential and can be entered by the user on demand,
you may choose not to store it locally on the client at all and instead obtain it from
the user as needed.

If your application needs to store sensitive data locally, you should usually avoid
using removable storage (such as floppy disks, zip disks, or USB storage devices)
or external portable storage to store sensitive data. However, user-specific data can be
stored on removable media when you can be sure that the removable media is owned
by that user (for example, by using a certificate or a smart card). Thus, user-specific
data can be kept in a secure location that travels with the user, so that roaming users
can access the application and their data without leaving that data on the local
computer.

Note: As you consider which sensitive data to store on the client, you should ensure that by storing
information about your employees or customers, you are not violating privacy regulations. These laws
differ from country to country, so you should familiarize yourself with privacy regulations in the
countries where your application is used.

Techniques for Protecting Sensitive Data
For data that you need to store at the client, there are a number of additional
measures you can take to prevent unauthorized access. These include the following:
● Ensure that only authorized users can access data.
● Consider using EFS to encrypt files.
● Consider using DPAPI to avoid key management issues.
● Consider storing hash values instead of plain text.
● Consider isolated storage for partially trusted applications.
● Secure your private keys.

Ensure that Only Authorized Users can Access Data
Your data often needs to be protected to help make sure that only authorized users
can access it. Depending on the nature of your application and how transient the data
is, you may choose to use resource-based security or role-based security to protect
your data. For more information, see “Authorization Guidelines” earlier in this
chapter.

Consider Using EFS to Encrypt Files
One option for ensuring that files are held securely on smart clients is to use the
Encrypting File System (EFS) to encrypt sensitive data files. This solution is not
particularly scalable; however, it can be useful for specific files, and it may be useful
for situations where you are caching data locally on the client (for example, to enable
occasionally connected smart clients).

 Chapter 5: Security Considerations 101

Consider Using DPAPI to Avoid Key Management Issues
Windows 2000 and later versions of the Windows operating system provide the
Win32® Data Protection API (DPAPI) for encrypting and decrypting data. It is part of
the Cryptography API (Crypto API) and is implemented in crypt32.dll. It consists of
two methods, CryptProtectData and CryptUnprotectData.

DPAPI is particularly useful because it can eliminate the key management problem
exposed to applications that use cryptography. While encryption ensures that the
data is secure, you must take additional steps to ensure the security of the key. To
derive the encryption key, DPAPI uses the password of the user account associated
with the code that calls the DPAPI functions. As a result, the operating system (and
not the application) manages the key.

DPAPI can work with either the machine store or user store. The user store is
automatically loaded based on the logged-on user profile. Your client applications
will mostly use DPAPI with the user store, unless there is need to store secrets
common across all users who can log on to the computer.

The keys that DPAPI uses to encrypt and decrypt sensitive data are specific to a
computer. A different key is generated for each computer, which prevents one server
from being able to access data encrypted by another.

The unmanaged DPAPI requires assemblies to have full trust. Applications that have
fully trusted and partially trusted assemblies can isolate code with high privileges
and enable it to be called from partially trusted code. For more information, see
“How To Create a Custom Encryption Permission” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/secmod/html/secmod115.asp.

Consider Storing Hash Values Instead of Plain Text
Sometimes data is stored so that it can be used to validate user input (for example,
a user name and password combination). In such cases, rather than storing the data
itself in plain text, you can store a cryptographic hash of the data. Then when the
user input is made, that data can also be hashed, and the two hashes can be
compared. Storing the hash reduces the risk of the secret being discovered because
it is computationally impossible to deduce the original data from its hash, or to
generate an identical hash from other data.

Consider Isolated Storage for Partially Trusted Applications
Isolated storage allows your application to save data to a unique data compartment
that is associated with some aspect of the code’s identity, such as its Web site,
publisher, or signature. The data compartment is an abstraction, not a specific storage
location; it consists of one or more isolated storage files, called stores, which contain
the actual directory locations where data is stored.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod115.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secmod/html/secmod115.asp

102 Smart Client Architecture and Design Guide

Isolated storage can be particularly useful for partially trusted applications that
need to store state data specific to particular users and assemblies. Partially trusted
applications do not have direct access to the file system to persist state unless they
have explicitly been granted permission to do so through a security policy change.

Data stored in isolated storage is isolated and protected from other partially trusted
applications, but it is not protected from fully trusted code or from other users who
have access to the client computer. To secure data in these scenarios, you should
employ data encryption and file system security through the use of DACLs. For more
information, see “Introduction to Isolated Storage” in the .NET Framework Developer’s
Guide at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpconIntroductionToIsolatedStorage.asp.

Protect Private Keys
Unprotected private keys are susceptible to a wide range of attacks by malicious
users or malicious code. Private keys used to sign assemblies should not be left in
insecure locations such as developers’ computers or openly shared environments.
Stolen private keys can be used by an attacker to sign malicious code with your
strong name. You should strongly consider securing your private keys with a central
security authority designated for this purpose within your organization. You can also
keep your private keys on a physically secure, isolated computer, transferring the
keys where necessary using portable media.

For more information about storing secrets effectively, see Writing Secure Code,
Second Edition, by Michael Howard and David LeBlanc.

Code Access Security
Code access security is .NET Framework technology that applies authentication
and authorization principles to code instead of users. Code access security can be a
powerful mechanism for ensuring that only the code that you intended to run is run
by the user.

All managed code is subject to code access security. When an assembly is loaded, it is
granted a set of code access permissions that determine what resources it can access
and what types of privileged operations it can perform. The .NET Framework
security system uses evidence to authenticate (identify) code in order to grant
these permissions.

Note: An assembly is the unit of configuration and trust for code access security. All code in the
same assembly receives the same permissions and is therefore equally trusted.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconIntroductionToIsolatedStorage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconIntroductionToIsolatedStorage.asp

 Chapter 5: Security Considerations 103

Code access security consists of the following elements:
● Permissions. Permissions represent the rights for code to access a secured resource

or perform a privileged operation. The Microsoft .NET Framework provides code
access permissions and code identity permissions. Code access permissions
encapsulate the ability to access a particular resource or perform a particular
privileged operation. For example, the FileIOPermission is required before the
application can perform any file I/O operations. Code identity permissions are
used to restrict access to code, based on an aspect of the calling code’s identity,
such as its strong name.

● Permission sets. The .NET Framework defines a number of permission sets,
which represent a group of permissions commonly assigned as a whole. For
example, the .NET Framework defines the FullTrust permission set, which assigns
all permissions to fully trusted code, and the LocalIntranet permission set, which
assigns a very limited number of permissions.

● Evidence. Evidence is used by the .NET Framework security system to identify
assemblies. Code access security policy uses evidence to help grant the right
permissions to the right assembly. Evidence may be location-related (for example,
URL, site, application directory, or zone) or author-related (for example, strong
name, publisher, or hash).

● Policy. Code access security policy is configured by administrators and
determines the permissions granted to assemblies. Policy can be established at the
enterprise, machine, user, and application domain levels. Each policy is defined in
an XML configuration file.

● Code groups. Each policy file contains a hierarchical collection of code groups.
Code groups are used to assign permissions to assemblies. A code group consists
of a membership condition (based on evidence) and a permission set. The .NET
Framework defines a number of default code groups, such as the Internet, Local
Intranet, Restricted, and Trusted zones.

For more detailed information about code access security, see the following chapters
of Improving Web Application Security: Threats and countermeasures: “Chapter 7 —
Building Secure Assemblies“ at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnnetsec/html/THCMCh07.asp and “Chapter 8 — Code Access Security in
Practice“ at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/THCMCh08.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

104 Smart Client Architecture and Design Guide

Code Access Security Permission Resolution
Code access security uses the steps outlined in Figure 5.2 to determine which
permissions are assigned to an assembly.

Load Assembly

Gather Evidence

Hash
Strong Name
Publisher Sig

Zone
URL
Site

Enterprise
Machine

User
AppDomain
(ASP.NET)

Grant Permission Sets
(yielding permissions)

Demand Permission

Continue with privileged
operation (or access resource)

Throw Security Exception

Security Policy Administrator

NO

YES

Assembly performs
privileged operation

Permission
Granted?

Figure 5.2
Determining which permissions are assigned to an assembly

 Chapter 5: Security Considerations 105

The following steps outline the procedure in more detail:
1. An assembly is loaded, and evidence is gathered and presented to the host.
2. The evidence is evaluated against the security policy for the hosting environment.
3. The output of this evaluation is a set of permissions granted to the assembly. These

permissions define what the assembly can and cannot do in this environment.
4. When the assembly asks to perform a privileged operation, the demands of that

operation are compared with the permissions of the assembly. If the assembly has
permission, the code is allowed to perform the operation; otherwise, a security
exception is thrown.

Designing for Code Access Security
The permissions assigned to your code depend on the evidence associated with your
code and the security policy in place on the client computer. To ensure the security of
your application while maintaining its functionality, you need to carefully consider
the permissions that your application requires, and the way in which these
permissions are granted.

Applications that are granted all permissions (those applications defined in the
FullTrust permission set) are known as fully trusted applications. Applications
that are not granted all permissions are known as partially trusted applications.

In theory, it is generally preferable to design your applications to be partially trusted.
However, smart client applications frequently need to perform a number of
operations that partially trusted applications cannot perform by default. These
operations include:
● Accessing servers other than the one from which the application was run or

accessing servers that use a different protocol
● Accessing the local file system
● Accessing and interacting with local Microsoft Office applications
● Accessing and interacting with unmanaged code, such as COM objects

If your smart client is required to perform these kinds of operations, you should
consider making it a fully trusted application or granting it the additional specific
permissions it requires to operate properly.

Note: Applications deployed using no-touch deployment are automatically partially trusted by default.
If your smart client needs to perform additional operations that cannot be performed by partially
trusted applications, you either need to deploy a new security policy or use an alternative method
to deploy the application.

106 Smart Client Architecture and Design Guide

Designing and building partially trusted applications can be challenging, but
carefully considering and restricting the permissions granted to your application
helps ensure that it cannot perform inappropriate actions or access resources that are
not explicitly required.

All code must be granted permission to run before it can be run, but code that
accesses secured resources or performs other security-sensitive operations (such
as calling unmanaged code or accessing the local file system) must be granted
additional permissions by the .NET Framework to be able to function. Such code
is referred to as privileged code. Conversely, nonprivileged code does not require
access to sensitive resources and requires only permission to run. When you design
and build your application and its assemblies, you should identify and document
privileged and nonprivileged code. Doing so helps you determine the permissions
that your code requires.

You should also carefully examine which evidence is used by the .NET Framework
to assign permissions to your code. Evidence based on the location of the application
(for example, a file share or Web server) should be considered only if the central
location is secure. Similarly, applications whose evidence is based on a common key
used to sign all code (for example, by an organization’s IT department) should be
used only when the key is secure. However, it is generally more secure to rely on
strong name evidence rather than any location-based evidence such as a Web server
address.

Designing Partially Trusted Applications
Use the following guidelines when you design partially trusted applications:
● Know your application deployment scenarios.
● Avoid permissions demands that raise exceptions.
● Use the Demand/Assert pattern for partially trusted callers.
● Consider using strong names for your assemblies.
● Avoid giving full trust to restricted zones.

Know Your Application Deployment Scenarios

You should have a clear understanding of your application deployment scenarios
during design, because the location to which your application is deployed has a
significant effect on the permissions that the application is granted by default.
Application functionalities such as displaying a dialog box (for example, using a
SaveFileDialog) or accessing system resources may be restricted based on the
deployment location of the application.

 Chapter 5: Security Considerations 107

In particular, the permissions granted to your application depend on the zone in
which it is located (for example, the Internet zone, Local Intranet zone, or Trusted
zone). The user has some control over the application’s membership in the Trusted
zone, but you should not rely on the user to place your application in this zone to
ensure correct functionality. You should design your application to fail gracefully
if insufficient permissions are granted to it at run time.

If a user attempts to perform an action and the application does not have sufficient
permissions to perform the action, the attempt may result in a failed permission
demand, which in turn raises a security exception. Your application needs to handle
these exceptions or it will fail. You should ensure that such failures are handled
gracefully, and you should give the user enough information to address the problem
without revealing inappropriate or sensitive security-related information.

Note: Applications deployed using the ClickOnce deployment features of the .NET Framework
version 2.0 will be granted specific permissions according to their deployment manifest. The granted
permissions will be fixed when the application is deployed, and the placement of the application’s
location in the Trusted zone will not affect the permissions that are granted.

Avoid Permission Demands that Raise Exceptions

Determine the permission required for each of your application functionalities to run
properly without raising exceptions. Consider the following:
● Design a workaround to avoid the permission demand that can cause

exceptions. For example, for intranet-based applications, instead of having the
application automatically open and read a file from the hard disk, you can use
OpenFileDialog to display a dialog box that instructs the user to select the file.

● Check permissions to gracefully deal with exceptions (specifically,
SecurityException). In your code, you can create an instance of a permission
class specific to the resource that you are trying to access and check for necessary
permissions before accessing the resource. For example, you can use the
FileDialogPermission class and the SecurityManager.IsGranted static
method to check for permissions when you have to display a dialog box using
OpenFileDialog or SaveFileDialog, as follows.

FileDialogPermission fileDialogPermission = new
 FileDialogPermission(FileDialogPermissionAccess.Save);
if (!SecurityManager.IsGranted(fileDialogPermission))
{
 // Not allowed to save file.
}

Note: IsGranted does not guarantee that an operation will succeed because it does not traverse
the stack to determine whether all upstream code has the required permissions.

108 Smart Client Architecture and Design Guide

● Consider prototyping and testing your application scenario for various
deployment zones:
● If your application is designed to run from a file share, you can simulate

this scenario by addressing the application as a network share (for example,
\\MachineName\c$\YourAppPath\YourApp.exe) and running it from your
hard disk.

● If your application is designed to run from the Web Internet zone, you can
use the IP address of your computer (for example, \\<MachineIPaddress\c$
\YourAppPath\YourApp.exe) to simulate this scenario.

The Demand/Assert pattern is used in fully trusted assemblies to allow access to
privileged operations when called by partially trusted callers. This pattern is useful
when a partially trusted caller needs to perform privileged operations in secure
manner but does not have the necessary privileges. By using Assert, you vouch
for the trustworthiness of your code’s callers.

Note: The Demand/Assert pattern should be used only when you fully understand the security risks
that its use can introduce. Asserting permissions turns off the normal .NET Framework permission
checks, which check all of the calling code on the stack. Turning off this mechanism may introduce a
serious security vulnerability into your code and should only be attempted when you fully understand
its implications and have exhausted all other possible solutions.

In this pattern, the Demand calls occur before the Assert calls. The Demand checks
to see if the caller has the permission, and then the Assert turns off the stack walk for
the particular permission so that callers are not checked by the common language
runtime to see they if have appropriate permissions.

For a partially trusted caller to successfully call a fully trusted assembly method, you
can demand appropriate permissions to ensure that the partially trusted caller does
not harm the system, and then assert the particular permission to perform the high
privilege operation.

You should call Assert in your fully trusted assembly prior to making the privileged
operation and call RevertAssert afterward to ensure that subsequent code in your
method calls does not inadvertently succeed because the Assert is still in effect. You
should place this code in a private function so that the Assert is removed from the
stack automatically (using a RevertAssert call) after the method returns. It is
important to make this method private so that an attacker cannot invoke the
method using external code.

Use the Demand/Assert Pattern for Partially Trusted Callers

 Chapter 5: Security Considerations 109

Consider the following example.

Private void PrivilegedOperation()
{
 // Demand for permission.
 new FileIOPermission(PermissionState.Unrestricted).Demand();
 // Assert to allow caller with insufficient permissions.
 new FileIOPermission(PermissionState.Unrestricted).Assert();
 // Perform your privileged operation.
}

By default, a fully trusted assembly does not allow calls from partially trusted
applications or assemblies; such calls raise a security exception. To avoid these
exceptions, you can add AllowPartiallyTrustedCallersAttribute (APTCA) to
the AssemblyInfo.cs file generated by Visual Studio .NET as follows.

[assembly: AllowPartiallyTrustedCallersAttribute()]

Note: Code that uses APTCA should be reviewed to ensure that it cannot be exploited by any
partially trusted malicious code. For more information, see “APTCA” in “Chapter 8 — Code Access
Security in Practice” of Improving Web Application Security: Threats and Countermeasures at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp.

Consider Using Strong-Named Assemblies

You can increase the security of your assemblies by using strong names for them.
You should consider signing all of the assemblies in your application with a strong
name, and modify the security policy to trust this strong name. You can sign the
assembly with a strong name key pair using the Sn.exe tool. To change the security
policy manually, you can use the .NET Framework Configuration MMC snap-in or
Caspol.exe, a command line tool (located at %SystemRoot%\Microsoft.NET
\Framework\<version>\CasPol.exe).

Your process for signing assemblies with private keys should take into account the
following:
● Use delayed signing for development. The build process to compile code can use

delayed signing, using the public portion of the strong name key pair instead of
the private key. To use delayed signing, the developer can add the following
attributes to the Assembly.cs file for your project.

[assembly:AssemblyKeyFile("publickey.snk")]
[assembly:AssemblyDelaySign(true)]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

110 Smart Client Architecture and Design Guide

● Secure the generated private keys. The following command line shows the use of
the strong name tool (Sn.exe), which is provided with the .NET Framework SDK,
to generate the key pair (Keypair.snk) directly to a removable storage device.
(In the example, the F drive used is a USB drive.)

sn -k f:\keypair.snk
sn -p f:\keypair.snk f:\publickey.snk

The public key (Publickey.snk) is used for delayed signing by the developers.
The key pair is stored in a secure location with highly restricted access.

● Disable verification for testing. To test an assembly that has been delay signed,
you can register it on test computers by using Sn.exe. Table 5.1 lists the commonly
used command-line variations.

Table 5.1: Commonly Used Command-Line Variations

Command Description

sn -Vr assembly.dll Disable verification for a specific assembly.

sn -Vr *,publickeytoken Disable verification for all assemblies with a particular public
key. The asterisk (*) registers all delayed signed assemblies
by a key corresponding to the provided public key token for
verification skipping.

● Sign with the private key for release. To complete the signing process, use the
following command to sign with the private key.

sn -r assembly.dll f:\keypair.snk

Designated team members should then test and review the assembly, before
signing it off for use in the organization.

For more information about delayed signing and the process explained in this
section, see the following resources in Improving Web Application Security: Threats and
Countermeasures:
● “Chapter 3 — Threat Modeling,” at http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnnetsec/html/THCMCh03.asp.
● “Delay Signing” in “Chapter 7 — Building Secure Assemblies” at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/THCMCh07.asp.

● “Chapter 5 — Architecture and Design Review for Security” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/THCMCh05.asp.

● “Chapter 21 — Code Review” at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/THCMCh21.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh21.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh21.asp

 Chapter 5: Security Considerations 111

See the article, “Strong Name Signing Using Smart Cards in Enterprise Software
Production Environment” at http://www.dotnetthis.com/Articles/SNandSmartCards.htm.

Avoid Giving Full Trust to Restricted Zones

As a quick workaround to resolve the security issues with partially trusted
applications, you might be tempted to give full trust to restricted zones such as the
Internet or Local Intranet zone. Doing so allows any application to run without code
access security checks on your local system, which becomes an issue if the application
is from a malicious source. However, if deployment scenarios are considered during
the design phase, you should not have to open up security to allow applications
to run.

Designing Fully Trusted Applications
Because partially trusted applications may have very little access to system resources,
your application may require more permissions than are assigned to it by default to
operate properly. Applications that need to be able to perform tasks such as
launching Office applications or Microsoft Internet Explorer, calling into legacy
COM components, or writing to the file system need to run with permissions that
enable these operations explicitly.

It can be tempting to assign your application as a fully trusted application so that it
is assigned all possible permissions. However, it is more secure to design and deploy
your application to request the minimum amount of permissions required for it to
operate properly. If you do need to run your application as a fully trusted application,
you should consider the following guidelines:
● Identify the types of resources your assembly needs to access and assess the

potential threats that are likely to occur if the assembly is compromised.
● Identify the trust level of your target environment because code access security

policy may constrain what your assembly is allowed to do.
● Reduce the attack surface by using the public access modifier only for classes

and members that form part of the assembly’s public interface. Wherever possible,
restrict access to all other classes and members using private or protected access
modifier.

● Use the sealed keyword to prevent inheritance of classes that are not designed as a
base class as shown in the following code.

public sealed class NobodyDerivesFromMe
{...}

http://www.dotnetthis.com/Articles/SNandSmartCards.htm

112 Smart Client Architecture and Design Guide

● Where possible, use declarative class level or method level attributes to restrict
access to members of the specified Windows group as shown in the following
code.

[PrincipalPermission(SecurityAction.Demand,Role=@"DomainName\WindowsGroup")]
public sealed class Orders()
{...}

● Establish a secure build process for delayed signing, testing, security reviews,
and securing the private keys.

Summary
Smart client applications are distributed applications. Therefore, to manage security
effectively for them, you need to consider security at the server, the client, and the
network connection between the two. Specific smart client considerations include
designing secure authentication, authorization, data validation, and securing
sensitive data. You should also examine how to use code access security, to manage
security at code level rather than user level.

6
Using Multiple Threads

A thread is a basic unit of execution. A single thread executes a series of application
instructions, following a single path of logic through the application. All applications
have at least one thread, but you can design your applications so that they use
multiple threads, with each thread executing separate logic. By using multiple
threads in your application, you can process lengthy or time-consuming tasks in the
background. Even on a computer with a single processor, the use of multiple threads
can significantly improve the responsiveness and usability of your application.

Developing your application to use multiple threads can be very complicated,
particularly if you do not carefully consider locking and synchronization issues.
As you develop your smart client application, you need to carefully evaluate where
and how multiple threads should be used so that you can gain maximum advantage
without creating applications that are unnecessarily complex and difficult to debug.

This chapter examines some of the concepts that are most important for developing
multithreaded smart client applications. It looks at some of the recommended uses
for multiple threads in a smart client application, and it describes how to implement
these capabilities.

Multithreading in the .NET Framework
All .NET Framework applications are created with a single thread, which is used to
execute the application. In smart client applications, this thread creates and manages
the user interface (UI) and is called the UI thread.

You can use the UI thread for all processing, including Web service calls, remote
object calls, and calls into a database. However, using the UI thread in this way is
generally not a good idea. In most cases, you will be unable to predict how long a
call to a Web service, remote object, or database will take, and you may cause the
UI to freeze while the UI thread waits for a response.

114 Smart Client Architecture and Design Guide

Creating additional threads enables your application to perform additional
processing without using the UI thread. You can use multiple threads to prevent the
UI from freezing while the application makes a Web service call, or to perform certain
local tasks in parallel to increase the overall efficiency of your application. In most
cases, you should strongly consider performing any tasks not related to the UI on a
separate thread.

Choosing Between Synchronous and Asynchronous Calls
Applications can make both synchronous and asynchronous calls. A synchronous call
waits for a response or return value before proceeding. A call is said to be blocked if it
is not allowed to proceed.

An asynchronous, or nonblocking call, does not wait for a response. Asynchronous
calls are carried out by using a separate thread. The original thread initiates the
asynchronous call, which uses another thread to carry out the request while the
original thread continues processing.

With smart client applications, it is important to minimize synchronous calls from
the UI thread. As you design your smart client application, you should consider each
call your application will make and determine whether a synchronous call may
negatively affect the application’s responsiveness and performance.

Use synchronous calls from the UI thread only when:
● Performing operations that manipulate the UI
● Performing small, well-defined operations that pose no risk of causing the UI

to freeze

Use asynchronous calls from the UI thread when:
● Performing background operations that do not affect the UI
● Making calls into other systems or resources located on the network
● Performing operations that may take a long time to complete

Choosing Between Foreground and Background Threads
All threads in the .NET Framework are designated as foreground threads or
background threads. The two have only one difference — background threads do
not prevent a process from terminating. After all foreground threads belonging to
a process have terminated, the common language runtime (CLR) ends the process,
terminating any background threads that are still running.

 Chapter 6: Using Multiple Threads 115

By default, all threads generated by creating and starting a new Thread object are
foreground threads, and all threads that enter the managed execution environment
from unmanaged code are marked as background threads. However, you can
modify whether a thread is a foreground or background thread by modifying the
Thread.IsBackground property. A thread is designated as a background thread by
setting Thread.IsBackground to true, and is designated a foreground thread by
setting Thread.IsBackground to false.

Note: For more information about the Thread object, see “Using the Thread Class” later in this
chapter.

In most applications, you will choose to set different threads as either foreground
or background threads. Usually, you should set threads that passively listen for
an activity as background threads, and set threads responsible for sending data as
foreground threads so that the thread is not terminated before all the data is sent.

You should use background threads only when you are sure that there will be
no adverse effects of the thread being unceremoniously terminated by the system.
Use a foreground thread when the thread is performing sensitive or transactional
operations that need to be completed, or when you need to control how the thread
is shut down so that important resources can be released.

Handling Locking and Synchronization
Sometimes when you build applications, you create multiple threads that all need
to use key resources, such as data or application components, at the same time. If you
are not careful, one thread could make a change to a resource while another thread is
working with it. The result may be that the resource is left in an indeterminate state
and is rendered unusable. This is known as a race condition. Other adverse effects of
using multiple threads without carefully considering shared resource usage include
deadlocks, thread starvation, and thread affinity issues.

To prevent these effects when accessing a resource from two or more threads, you
need to coordinate the threads that are trying to access the resource by using locking
and synchronization techniques.

Managing thread access to shared resources using locking and synchronization is
a complex task and should be avoided wherever possible by passing data between
threads rather than providing shared access to a single instance.

116 Smart Client Architecture and Design Guide

If you can’t eliminate resource sharing between threads, you should:
● Use the lock statement in Microsoft Visual C#® and the SyncLock statement in

Microsoft® Visual Basic® .NET to create a critical section, but beware of making
method calls from within a critical section to prevent deadlocks.

● Use the Synchronized method to obtain thread-safe .NET collections.
● Use the ThreadStatic attribute to create per-thread members.
● Use a double-check lock or the Interlocked.CompareExchange method to prevent

unnecessary locking.
● Ensure that static state is thread safe.

For more information about locking and synchronization techniques, see “Threading
Design Guidelines” in .NET Framework General Reference at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/cpgenref/html/cpconthreadingdesignguidelines.asp.

Using Timers
In some situations, you may not need to use a separate thread. If your application
needs to perform simple, UI-related operations periodically, you should consider
using a process timer. Process timers are sometimes used in smart client
applications to:
● Perform operations at regularly scheduled times.
● Maintain consistent animation speeds (regardless of processor speed) when

working with graphics.
● Monitor servers and other applications to confirm that they are online and

running.

The .NET Framework provides three process timers:
● System.Window.Forms.Timer
● System.Timers.Timer
● System.Threading.Timer

System.Window.Forms.Timer is useful if you want to raise events in a Windows
Forms application. It is specifically optimized to work with Windows Forms and
must be used within a Windows Form. It is designed to work in a single-threaded
environment and operates synchronously on the UI thread. This means that this
timer will never preempt the execution of application code (assuming that you
do not call Application.DoEvents) and is safe to interact with the UI.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconthreadingdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconthreadingdesignguidelines.asp

 Chapter 6: Using Multiple Threads 117

System.Timers.Timer is designed and optimized for use in multithreaded
environments. Unlike System.Window.Forms.Timer, this timer calls your event
handler on a worker thread obtained from the CLR thread pool. You should ensure
that the event handler does not interact with the UI in this case.
System.Timers.Timer exposes a SynchronizingObject property that can mimic
behavior from System.Windows.Forms.Timer, but unless you need more precise
control over the timing of the events, you should use System.Windows.Forms.Timer
instead.

System.Threading.Timer is a simple, lightweight server-side timer. It is not
inherently thread safe and it is more cumbersome to use than other timers. This
timer is generally not suitable for Windows Forms environments.

Table 6.1 lists the various properties of each timer.

Table 6.1: Process Timer Properties

Property System.Windows.Forms System.Timers System.Threading

Timer event runs on what
thread?

UI thread UI or worker thread Worker thread

Instances are thread safe? No Yes No

Requires Windows Forms? Yes No No

Initial timer event can be
scheduled?

No No Yes

When to Use Multiple Threads
Multithreading can be used in many common situations to significantly improve
the responsiveness and usability of your application.

You should strongly consider using multiple threads to:
● Communicate over a network, for example to a Web server, database, or remote

object.
● Perform time-consuming local operations that would cause the UI to freeze.
● Distinguish tasks of varying priority.
● Improve the performance of application startup and initialization.

It is useful to examine these uses in more detail.

118 Smart Client Architecture and Design Guide

Communicating Over a Network
Smart-clients may communicate over a network in a number of ways, including:
● Remote object calls, such as DCOM, RPC or .NET remoting
● Message-based communications, such as Web service calls and HTTP requests
● Distributed transactions

Many factors determine how fast a network service responds to an application
making a request, including the nature of the request, network latency, reliability
and bandwidth of a connection, and how busy the service or services are.

This unpredictability can cause problems with the responsiveness of single-threaded
applications, and multithreading is often a good solution. You should create a
separate thread to the UI thread for all communication over a network, and then
pass the data back to the UI thread when a response is received.

It is not always necessary to create separate threads for network communication.
If your application communicates over the network asynchronously, for example
using Microsoft Windows Message Queuing (also known as MSMQ), it does not wait
for a response before continuing. However, even in this case, you should still use a
separate thread to listen for and process the response when it arrives.

Performing Local Operations
Even in situations where processing occurs locally, some operations may take enough
time to negatively affect the responsiveness of your application. Such operations
include:
● Image rendering
● Data manipulation
● Data sorting
● Searching

You should not perform operations such as these on the UI thread because doing
so causes performance problems in your application. Instead, you should use an
additional thread to perform these operations asynchronously and prevent the
UI thread from blocking.

In many cases, you should also design the application so that it reports the progress
and success or failure of ongoing background operations. You may also consider
allowing the user to cancel background operations to improve usability.

 Chapter 6: Using Multiple Threads 119

Distinguishing Tasks of Varying Priority
Not all of the tasks your application has to perform will be of the same priority. Some
tasks will be time critical, and others will not. In other cases, you may find that one
thread is dependent on the results of processing on another thread.

You should create threads of different priorities to reflect the priorities of the tasks
they are performing. For example, you should use a high-priority thread to manage
time-critical tasks, and a low-priority thread to perform passive tasks or tasks that are
not time-sensitive.

Application Startup
Your application often has to perform a number of operations when it first runs.
For example, it may need to initialize its state, retrieve or update data, and open
connections to local resources. You should consider using a separate thread to
initialize your application, allowing the user to start using the application as soon
as possible. Using a separate thread for initialization increases your application’s
responsiveness and usability.

If you do perform initialization on a separate thread, you should prevent the user
from initiating operations that depend on initialization being completed, by updating
the UI menu and toolbar button state after initialization is complete. You should also
provide clear feedback that notifies users of the initialization progress.

Creating and Using Threads
There are several ways that you can create and use background threads in the
.NET Framework. You can use the ThreadPool class to access the pool of threads
managed by the .NET Framework for a given process, or you can use the Thread
class to explicitly create and manage a thread. Alternatively, you can use delegate
objects or a Web service proxy to cause specific processing to occur on a non-UI
thread. This section examines each of these different methods in turn and makes
recommendations about when each should be used.

Using the ThreadPool Class
By now you probably realize that many of your applications would benefit from
multithreading. However, thread management is not just a question of creating a new
thread each time you want to perform a different task. Having too many threads can
cause an application to use an unnecessary number of system resources, particularly
if you have a large number of short-running operations, all of which are running on
separate threads. Also, managing a large number of threads explicitly can be very
complex.

120 Smart Client Architecture and Design Guide

Thread pooling solves these problems by providing your application with a pool
of worker threads that are managed by the system, allowing you to concentrate
on application tasks rather than thread management.

Threads can be added to the thread pool as required by the application. When the
CLR initially starts, the thread pool contains no additional threads. However, as your
application requests threads, they are dynamically created and stored in the pool.
If threads are not used for some time, they can be disposed of, so the thread pool
shrinks and grows according to the demands of the application.

Note: One thread pool is created per process, so if you run several application domains within
the same process, an error in one application domain can affect the rest within the same process
because they use the same thread pool.

A thread pool consists of two types of threads:
● Worker threads. The worker threads are part of the standard system pool. They

are standard threads managed by the .NET Framework, and most functions are
executed on them.

● Completion port threads. This kind of thread is used for asynchronous I/O
operations, using the IOCompletionPorts API.

Note: If the application is trying to perform I/O operations with a computer that does not have
IOCompletionPorts functionality, it will revert to using worker threads.

The thread pool contains a default of 25 threads per computer processor. If all 25
threads are being used, additional requests queue until a thread becomes available.
Each thread uses the default stack size and runs at the default priority.

The following code example shows the use of a thread pool.

private void ThreadPoolExample()
{
 WaitCallback callback = new WaitCallback(ThreadProc);
 ThreadPool.QueueUserWorkItem(callback);
}

In the preceding code, you first create a delegate to reference the code you want
executed on a worker thread. The .NET Framework defines the WaitCallback
delegate, which references a method that takes a single object parameter and
returns no values. The following method implements the code you want executed.

private void ThreadProc(Object stateInfo)
{
 // Do something on worker thread.
}

 Chapter 6: Using Multiple Threads 121

You can pass a single object argument to the ThreadProc method by specifying it
as the second parameter in the QueueUserWorkItem method call. In the preceding
example, no arguments are passed to the ThreadProc method, so the stateInfo
parameter will be null.

Use the ThreadPool class when:
● You have a large number of small and independent tasks that are to be performed

in the background.
● You do not need to have fine control over the thread used to perform a task.

Using the Thread Class
You can explicitly manage threads by using the Thread class. This includes threads
created by the CLR and those created outside the CLR that enter the managed
environment to execute code. The CLR monitors all of the threads in its process
that have ever executed code within the .NET Framework and uses an instance of
the Thread class to manage them.

Whenever you can, you should create threads using the ThreadPool class. However,
there are several situations where you will need to create and manage your own
threads instead of using the ThreadPool class.

Use a Thread object when:
● You need a task to have a particular priority.
● You have a task that might run a long time (and therefore might block other tasks).
● You need to ensure that particular assemblies can be accessed by only one thread.
● You need to have a stable identity associated with the thread.

The Thread object contains a number of properties and methods that help you
control threads. You can set the priority of thread, query the current thread state,
abort threads, temporarily block threads, and perform many other thread
management tasks.

The following code example demonstrates the use of the Thread object to create and
start a thread.

static void Main()
{
 System.Threading.Thread workerThread =
 new System.Threading.Thread(SomeDelegate);
 workerThread.Start();
}
public static void SomeDelegate () { Console.WriteLine("Do some work."); }

In this example, SomeDelegate is a ThreadStart delegate — a reference to the
code that will be executed on the new thread. Thread.Start submits a request to
the operating system to start the thread.

122 Smart Client Architecture and Design Guide

If you instantiate a new thread this way, you cannot pass any arguments to the
ThreadStart delegate. If you need to pass an argument to a method to be executed
on another thread, you should create a custom delegate with the required method
signature and invoke it asynchronously.

For more information about custom delegates, see “Using Delegates” later in this
chapter.

If you need to receive updates or results from a separate thread, you can use a
callback method — a delegate that references code to be called after the thread
finishes its work — that allows threads to interact with the UI. For more information,
see “Using Tasks to Handle Interactions Between the UI Thread and Other Threads”
later in this chapter.

Using Delegates
A delegate is a reference (or a pointer) to a method. When you define a delegate,
you specify the exact method signature that other methods must match if they want
to represent the delegate. All delegates can be invoked both synchronously and
asynchronously.

The following code example shows how to declare a delegate. This example shows
a long-running calculation implemented as a method in a class.

delegate string LongCalculationDelegate(int count);

If the .NET Framework encounters a delegate declaration like the previous one,
it implicitly declares a hidden class derived from the MultiCastDelegate class,
as shown in the following code example.

Class LongCalculationDelegate : MutlicastDelegate
{
 public string Invoke(count);
 public void BeginInvoke(int count, AsyncCallback callback,
 object asyncState);
 public string EndInvoke(IAsyncResult result);
}

The delegate type LongCalculationDelegate is used to reference a method that
takes a single integer parameter and returns a string. The following code example
instantiates a delegate of this type that references a specific method with the relevant
signature.

LongCalculationDelegate longCalcDelegate =
 new LongCalculationDelegate(calculationMethod);

In the example, calculationMethod is the name of a method that implements the
calculation you want performed on a separate thread.

 Chapter 6: Using Multiple Threads 123

You can invoke the method referenced by the delegate instance either synchronously
or asynchronously. To invoke it synchronously, use the following code.

string result = longCalcDelegate(10000);

This code internally uses the Invoke method defined in the delegate type above.
Because the Invoke method is a synchronous call, this method returns only after
the invoked method returns. The return value is the result of the invoked method.

More frequently, to prevent the calling thread from blocking, you will choose to
invoke the delegate asynchronously, using the BeginInvoke and EndInvoke
methods. Asynchronous delegates use the thread pooling capabilities of the
.NET Framework for thread management. The standard Asynchronous Call pattern
implemented by the .NET Framework provides the BeginInvoke method to initiate
the required operation on a thread, and it provides the EndInvoke method to allow
the asynchronous operation to be completed and any resulting data to be passed back
to the calling thread. After the background processing completes, you can invoke a
callback method within which you can call EndInvoke to retrieve the result of the
asynchronous operation.

When you call the BeginInvoke method, it does not wait for the call to complete;
instead, it immediately returns an IAsyncResult object, which can be used to monitor
the progress of the call. You can use the WaitHandle member of the IAsyncResult
object to wait for the asynchronous call to complete or use the IsComplete member
to poll for completion. If you call the EndInvoke method before the call completes,
it will block and return only after the call completes. However, you should be careful
not to use these techniques to wait for the call to complete, because they may block
the UI thread. In general, the callback mechanism is the best way to be notified that
the call has completed.

� To execute a method referenced by a delegate asynchronously

1. Define a delegate representing the long-running asynchronous operation,
as shown in the following example.

delegate string LongCalculationDelegate(int count);

2. Define a method matching the delegate signature. The following example method
simulates a time-consuming operation by causing the thread to sleep for count
milliseconds before returning.

private string LongCalculation(int count)
{
 Thread.Sleep(count);
 return count.ToString();
}

124 Smart Client Architecture and Design Guide

3. Define a callback method that corresponds to the AsyncCallback delegate defined
by the .NET Framework, as shown in the following example.

private void CallbackMethod(IAsyncResult ar)
{
 // Retrieve the invoking delegate.
 LongCalculationDelegate dlgt = (LongCalculationDelegate)ar.AsyncState;
 // Call EndInvoke to retrieve the results.
 string results = dlgt.EndInvoke(ar);
}

4. Create an instance of a delegate that references the method you want to call
asynchronously and create an AsyncCallback delegate that references the callback
method, as shown in the following code example.

 LongCalculationDelegate longCalcDelegate =
 new LongCalculationDelegate(calculationMethod);
 AsyncCallback callback = new AsyncCallback(CallbackMethod);

5. From your calling thread, initiate the asynchronous call by calling the
BeginInvoke method on the delegate that references the code you want to execute
asynchronously.

 longCalcDelegate.BeginInvoke(count, callback, longCalcDelegate);

The method LongCalculation is called on the worker thread. When it completes,
the method CallbackMethod is called, and the results of the calculation retrieved.

Note: The callback method is executed on a non-UI thread. To modify the UI, you need to use
techniques to switch from this thread to the UI thread. For more information, see “Using Tasks
to Handle Interactions Between the UI Thread and Other Threads” later in this chapter.

You can use a custom delegate to pass arbitrary parameters to a method to be
executed on a separate thread (something you cannot do when you create threads
directly using either the Thread object or a thread pool.)

Invoking delegates asynchronously is particularly useful when you need to invoke
long-running operations in the application UI. If users perform an operation in the UI
that is expected to take a long time to complete, you do not want the UI to freeze and
not be able to refresh itself. Using an asynchronous delegate, you can return control
to your main UI thread to perform other operations.

You should use a delegate to invoke a method asynchronously when:
● You need to pass arbitrary parameters to a method you want to execute

asynchronously.
● You want to use the Asynchronous Call pattern provided by the .NET Framework.

 Chapter 6: Using Multiple Threads 125

Note: For more details about how to use BeginInvoke and EndInvoke to make asynchronous
calls, see “Asynchronous Programming Overview” in the .NET Framework Developer’s Guide at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html
/cpovrasynchronousprogrammingoverview.asp.

Calling Web Services Asynchronously
Applications often communicate with network resources using Web services.
In general, you should not call a Web service synchronously from the UI thread,
because response times to Web service calls vary widely, as do response times in
all interactions over the network. Instead, you should call all Web services
asynchronously from the client.

To see how to call Web services asynchronously, consider the following simple Web
service, which sleeps for a period of time and then returns a string indicating that it
has completed its operation.

[WebMethod]
public string ReturnMessageAfterDelay(int delay)
{
 System.Threading.Thread.Sleep(delay);
 return "Message Received";
}

When you reference a Web service in the Microsoft Visual Studio® .NET development
system, it automatically generates a proxy. A proxy is a class that allows your
Web services to be invoked asynchronously using the Asynchronous Call pattern
implemented by the .NET Framework. If you examine the proxy that is generated,
you will see the following three methods.

public string ReturnMessageAfterDelay(int delay)
{
 object[] results = this.Invoke("ReturnMessageAfterDelay",
 new object[] {delay});
 return ((string)(results[0]));
}
public System.IAsyncResult BeginReturnMessageAfterDelay(int delay,
 System.AsyncCallback callback, object asyncState)
{
 return this.BeginInvoke("ReturnMessageAfterDelay",
 new object[] {delay}, callback, asyncState);
}
public string EndReturnMessageAfterDelay(System.IAsyncResult asyncResult)
{
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrasynchronousprogrammingoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrasynchronousprogrammingoverview.asp

126 Smart Client Architecture and Design Guide

The first method is the synchronous method for invoking the Web service. The
second and third methods are asynchronous methods. You can call the Web service
asynchronously as follows.

private void CallWebService()
{
 localhost.LongRunningService serviceProxy =
 new localhost.LongRunningService();
 AsyncCallback callback = new AsyncCallback(Completed);
 serviceProxy.BeginReturnMessageAfterDelay(callback, serviceProxy, null);
}

This example is very similar to the asynchronous callback example using a custom
delegate. You define an AsyncCallback object with a method that will be invoked
when the Web service returns. You invoke the asynchronous Web service with a
method that specifies the callback and the proxy itself, as shown in the following
code example.

void Completed(IAsyncResult ar)
{
 localhost.LongRunningService serviceProxy =
 (localhost.LongRunningService)ar.AsyncState;
 string message = serviceProxy.EndReturnMessageAfterDelay(ar);
}

When the Web service completes, the completed callback method is called. You can
then retrieve your asynchronous result by calling EndReturnMessageAfterDelay on
the proxy.

Using Tasks to Handle Interaction Between the UI Thread
and Other Threads

One of the most challenging aspects of designing multithreaded applications is
handling the relationship between the UI thread and other threads. It is critical that
the background threads you use in your application do not directly interact with
the application UI. If a background thread tries to modify a control in the UI of your
application, the control can be left in an unknown state. This can cause major
problems in your application that are difficult to diagnose. For example, a
dynamically generated bitmap may be unable to render while another thread is
feeding it new data. Or, a component bound to a dataset may display conflicting
information while the dataset is being refreshed.

To avoid these problems, you should never allow threads other than the UI thread to
make changes to UI controls, or to data objects bound to the UI. You should always
try and maintain a strict separation between the UI code and the background
processing code.

 Chapter 6: Using Multiple Threads 127

Separating the UI thread from the other threads is good practice, but you still need to
pass information back and forth between the threads. Your multithreaded application
will typically need to be capable of the following:
● Obtaining the results from a background thread and updating the UI.
● Reporting progress to the UI as a background thread performs its processing.
● Controlling the background thread from the UI, for example letting the user cancel

the background processing.

An effective way to separate the UI code from the code that handles the background
thread is to structure your application in terms of tasks, and to represent each task
using an object that encapsulates all of the task details.

A task is a unit of work that the user expects to be able to carry out within the
application. In the context of multithreading, the Task object encapsulates all of
the threading details so that they are cleanly separated from the UI.

By using the Task pattern, you can simplify your code when using multiple threads.
The Task pattern clearly separates thread management code from UI code. The UI
uses properties and methods provided by the Task object to perform actions such
as starting and stopping tasks, and to query them for status. The Task object can also
provide a number of events, allowing status information to be passed back to the UI.
These events should all be fired on the UI thread so that the UI does not need to be
aware of the background thread.

You can simplify thread interactions substantially by using a Task object that is
responsible for controlling and managing the background thread but fires events that
can be consumed by the UI and guaranteed to be on the UI thread. Task objects can
be reused in various parts of the application, or even in other applications.

Figure 6.1 illustrates the overall structure of the code when you use the Task pattern.

Task Object/
Service Agent

Application User Interface

UI Thread

Property and
Method Calls

Events
(Fired on

UI Thread)

Task State

Task Thread

Figure 6.1
Code structure when using the Task pattern

128 Smart Client Architecture and Design Guide

Note: The Task pattern can be used to perform local background processing tasks on a separate
thread or to interact with a remote service over the network asynchronously. In the latter case, the
Task object is often called a service agent. A service agent can use the same pattern as the Task
object and can support properties and events that make its interaction with the UI easier.

Because the Task object encapsulates the state of the task, you can use it to update the
UI. To do so, you can have the Task object fire PropertyChanged events to the main
UI thread whenever a change occurs. These events provide a standard, consistent
way to communicate property value changes.

You can use tasks to inform the main UI thread of progress or other state changes.
For example, when a task becomes available, you can set its enabled flag, which
can be used to enable the corresponding menu item and toolbar buttons. Conversely,
when a task becomes unavailable (for example, because it is in progress), you can
set the enabled flag to false, which causes the event hander in the main UI thread to
disable the correct menu items and toolbar buttons.

You can also use tasks to update data objects that are bound to the UI. You should
ensure that any data objects that are data bound to UI controls are updated on the
UI thread. For example, if you bind a DataSet object to the UI and retrieve updated
information from a Web service, you can pass the new data to your UI code. The UI
code then merges the new data into the bound DataSet on the UI thread.

You can use a Task object to implement background processing and threading control
logic. Because the Task object encapsulates the necessary state and data, it can
coordinate the work required to carry out the task on one or more threads and
communicate changes and notifications to the application’s UI as required. All
required locking and synchronization can be implemented and encapsulated in
the Task object, so that the UI thread does not have to deal with these issues.

 Chapter 6: Using Multiple Threads 129

Defining a Task Class
The following code example shows a class definition for a task that manages a long
calculation.

Note: Although this example is simple, it can be easily extended to support complex background
tasks that are integrated in the application’s UI.

public class CalculationTask
{
 // Class Members…

 public CalculationTask();
 public void StartCalculation(int count);
 public void StopCalculation();

 private void FireStatusChangedEvent(CalculationStatus status);
 private void FireProgressChangedEvent(int progress);
 private string Calculate(int count);
 private void EndCalculate(IAsyncResult ar);
}

The CalculationTask class defines a default constructor and two public methods
for starting and stopping the calculation. It also defines helper methods that help the
Task object to fire events to the UI. The Calculate method implements the calculation
logic and is run on a background thread. The EndCalculate method implements the
callback method, which is called after the background calculation thread has
completed.

The class members are as follows:

private CalculationStatus _calcState;

private delegate string CalculationDelegate(int count);

public delegate void CalculationStatusEventHandler(
 object sender, CalculationEventArgs e);

public delegate void CalculationProgressEventHandler(
 object sender, CalculationEventArgs e);

public event CalculationStatusEventHandler CalculationStatusChanged;
public event CalculationProgressEventHandler CalculationProgressChanged;

130 Smart Client Architecture and Design Guide

The CalculationStatus member is an enumeration that defines the three states that
the calculation can be in at any one time.

public enum CalculationStatus
{
 NotCalculating,
 Calculating,
 CancelPending
}

The Task class provides two events: one to inform the UI about calculation status
events, and the other to inform the UI about calculation progress. The delegate
signatures are defined as well as the events themselves.

The two events are fired in the helper methods. These methods check the type of the
target; if the target’s type is derived from the Control class, they fire the events by
using the Invoke method on the control class. Therefore, for UI event sinks, the event
is guaranteed to be called on the UI thread. The following example shows the code
for firing the event.

private void FireStatusChangedEvent(CalculationStatus status)
{
 if(CalculationStatusChanged != null)
 {
 CalculationEventArgs args = new CalculationEventArgs(status);
 if (CalculationStatusChanged.Target is
 System.Windows.Forms.Control)
 {
 Control targetForm = CalculationStatusChanged.Target
 as System.Windows.Forms.Control;
 targetForm.Invoke(CalculationStatusChanged,
 new object[] { this, args });
 }
 else
 {
 CalculationStatusChanged(this, args);
 }
 }
}

This code first checks to see if an event sink has been registered, and if it has been
registered, it checks the type of the target. If the target’s type is derived from the
Control class, the event is fired using the Invoke method to ensure that it is
processed on the UI thread. If the target’s type is not derived from the Control class,
the event is fired normally. Events are fired in the same way to report calculation
progress to the UI in the FireProgressChangedEvent method, as shown in the
following example.

 Chapter 6: Using Multiple Threads 131

private void FireProgressChangedEvent(int progress)
 {
 if(CalculationProgressChanged != null)
 {
 CalculationEventArgs args =
 new CalculationEventArgs(progress);
 if (CalculationStatusChanged.Target is
 System.Windows.Forms.Control)
 {
 Control targetForm = CalculationStatusChanged.Target
 as System.Windows.Forms.Control;
 targetForm.Invoke(CalculationProgressChanged,
 new object[] { this, args });
 }
 else
 {
 CalculationProgressChanged(this, args);
 }
 }
}

The CalculationEventArgs class defines the event arguments for both events and
contains the calculation status and progress parameters so that they can be sent to
the UI. The CalculationEventArgs class is defined as follows.

public class CalculationEventArgs : EventArgs
 {
 public string Result;
 public int Progress;
 public CalculationStatus Status;

 public CalculationEventArgs(int progress)
 {
 this.Progress = progress;
 this.Status = CalculationStatus.Calculating;
 }

 public CalculationEventArgs(CalculationStatus status)
 {
 this.Status = status;
 }
}

132 Smart Client Architecture and Design Guide

The StartCalculation method is responsible for starting the calculation on the
background thread. The delegate CalculationDelegate allows the Calculation
method to be invoked on a background thread using the Delegate Asynchronous Call
pattern, as shown in the following example.

public void StartCalculation(int count)
{
 lock(this)
 {
 if(_calcState == CalculationStatus.NotCalculating)
 {
 // Create a delegate to the calculation method.
 CalculationDelegate calc =
 new CalculationDelegate(Calculation);

 // Start the calculation.
 calc.BeginInvoke(count,
 new AsyncCallback(EndCalculate), calc);

 // Update the calculation status.
 _calcState = CalculationStatus.Calculating;

 // Fire a status changed event.
 FireStatusChangedEvent(_calcState);
 }
 }
}

The StopCalculation method is responsible for canceling the calculation, as shown in
the following code example.

public void StopCalculation()
{
 lock(this)
 {
 if(_calcState == CalculationStatus.Calculating)
 {
 // Update the calculation status.
 _calcState = CalculationStatus.CancelPending;

 // Fire a status changed event.
 FireStatusChangedEvent(_calcState);
 }
 }
}

When StopCalculation is called, the calculation state is set to CancelPending to
signal the background to stop the calculation. An event is fired to the UI to signal
that the cancel request has been received.

 Chapter 6: Using Multiple Threads 133

Both of these methods use the lock keyword to ensure that the changes to the
calculation state variable are atomic, so your application does not encounter a race
condition. Both methods fire a status changed event to inform the UI that the
calculation is starting or stopping.

The calculation method is defined as follows.

private string Calculation(int count)
{
 string result = "";
 for (int i = 0 ; i < count ; i++)
 {
 // Long calculation…

 // Check for cancel.
 if (_calcState == CalculationStatus.CancelPending) break;

 // Update Progress
 FireProgressChangedEvent(count, i);
 }
 return result;
}

Note: For clarity, the details of the calculation have been omitted.

As each pass is made through the loop, the calculation state member is checked to
see if the user has canceled the calculation. If so, the loop is exited, completing the
calculation method. If the calculation continues, an event is fired, using the
FireProgressChanged helper method, to report progress to the UI.

After the calculation is complete, the EndCalculate method is called to finish the
asynchronous call by calling EndInvoke, as shown in the following example.

private void EndCalculate(IAsyncResult ar)
{
 CalculationDelegate del = (CalculationDelegate)ar.AsyncState;
 string result = del.EndInvoke(ar);

 lock(this)
 {
 _calcState = CalculationStatus.NotCalculating;
 FireStatusChangedEvent(_calcState);
 }
}

EndCalculate resets the calculation state to NotCalculating, ready for the next
calculation to begin. It also fires a status changed event so that the UI can be notified
that the calculation has been completed.

134 Smart Client Architecture and Design Guide

Using the Task Class
The Task class is responsible for managing background threads. To use the Task
class, all you have to do is create a Task object, register the events that it fires, and
implement the handling for these events. Because the events are fired on the UI
thread, you don’t need to worry about threading issues at all in your code.

The following example shows a Task object being created. In this example, the UI has
two buttons, one for starting the calculation and one for stopping the calculation, and
a progress bar that shows the current calculation progress.

// Create new task object to manage the calculation.
_calculationTask = new CalculationTask();

// Subscribe to the calculation status event.
_ calculationTask.CalculationStatusChanged += new
 CalculationTask.CalculationStatusEventHandler(OnCalculationStatusChanged);

// Subscribe to the calculation progress event.
_ calculationTask.CalculationProgressChanged += new
 CalculationTask.CalculationProgressEventHandler(OnCalculationProgressChanged);

The event handlers for the calculation status and calculation progress events update
the UI appropriately, for example by updating a status bar control.

private void CalculationProgressChanged(object sender, CalculationEventArgs e)
{
 _progressBar.Value = e.Progress;
}

The CalculationStatusChanged event handler, which is shown in the following code,
updates the value of a progress bar to reflect the current progress of the calculation. It
is assumed that the minimum and maximum values of the progress bar have already
been initialized.

 Chapter 6: Using Multiple Threads 135

private void CalculationStatusChanged(object sender, CalculationEventArgs e)
{
 switch (e.Status)
 {
 case CalculationStatus.Calculating:
 button1.Enabled = false;
 button2.Enabled = true;
 break;

 case CalculationStatus.NotCalculating:
 button1.Enabled = true;
 button2.Enabled = false;
 break;

 case CalculationStatus.CancelPending:
 button1.Enabled = false;
 button2.Enabled = false;
 break;
 }
}

In this example, the CalculationStatusChanged event handler enables and disables
the start and stop buttons depending on the calculation’s status. This prevents the
user from trying to start a calculation that is already in progress and provides
feedback to the user about the status of the calculation.

The UI implements form event handlers for each button click to start and stop the
calculation using the public methods on the Task object. For example, a start button
event handler calls the StartCalculation method as follows.

private void startButton_Click(object sender, System.EventArgs e)
{
 calculationTask.StartCalculation(1000);
}

Similarly, a stop calculation button stops the calculation by calling the
StopCalculation method as follows.

private void stopButton_Click(object sender, System.EventArgs e)
{
 calculationTask.StopCalculation();
}

136 Smart Client Architecture and Design Guide

Summary
Multithreading is an important part of creating responsive smart client applications.
You should examine where multiple threads are appropriate for your application,
looking to conduct all processing that does not involve the UI directly on separate
threads. In most cases, you can use the ThreadPool class to create threads. However,
in some cases you have to use the Thread class instead, and in others you need to
use delegate objects or a Web service proxy to cause specific processing to occur on
a non-UI thread.

In multithreaded applications, you must ensure that the UI thread is responsible for
all UI-related tasks, and that you manage communication between the UI thread and
other threads effectively. The Task pattern can help simplify this interaction
significantly.

7
Deploying and Updating
Smart Client Applications

Smart client applications perform local processing on the client computer, and
so need to be deployed on those computers. In the past, deploying, updating,
maintaining and uninstalling applications over time on client computers was
difficult and problematic. With COM, several problems made it very difficult to
deploy applications to the client computer, including:
● Applications that were tightly coupled with the registry. Installing a COM

application required registering classes and type libraries in the registry.
● Applications that were not self-contained. Besides having to register classes and

types in the registry, applications typically included shared files located on disk
as well as configuration settings contained in the registry. The application wasn’t
self-contained; rather, its constituent parts were distributed to different areas on
the computer.

● Components that could not be deployed side by side. It was not possible to
deploy two different versions of the same DLL into the same directory.

These problems were a large barrier to effective deployment and maintenance of
client applications.

The Microsoft® .NET Framework has a number of features that simplify the process
of deploying .NET Framework applications. These features include:
● Self-describing assemblies. .NET Framework assemblies contain metadata that

describes (among other things) version information, types, resources, and details
of all referenced assemblies. This means that they are not dependent on the
registry.

● Versioning and side-by-side support. The .NET Framework has extensive
support for versioning, allowing you to install multiple versions of an application
and multiple versions of the .NET Framework, so that they can run side by side.

138 Smart Client Architecture and Design Guide

● Isolated applications. .NET Framework assemblies can be deployed to the
application directory, for use by that specific application, and by default are kept,
isolated from other applications. This means that assemblies do not need to be
deployed to the Windows directory or explicitly registered in the registry, and
reduces the likelihood that they are overwritten or deleted when installing other
applications.

● Global assembly cache. If you want to share code among different applications
on the same computer, you can deploy components to the global assembly cache.
The global assembly cache allows different versions of the same assembly to
coexist. When referencing assemblies in the global assembly cache, you must
specify the fully qualified name of the assembly that includes the public key token
and version number. This helps prevent unintentional use of a different version of
a component.

● Default run-time binding against build-time assemblies for strong-named
assemblies. By default, if an assembly is strong named, the .NET Framework
binds to the exact version of its dependent assemblies. This reduces application
fragility because the .NET Framework loads the exact versions of the assemblies
that it was built and tested against. This behavior can be explicitly overridden
if required.

Collectively, these changes help to address many of the underlying issues that
plagued the deployment and maintenance of rich client applications in the past.
For more information about how the .NET Framework simplifies deployment,
see “Simplifying Deployment and Solving DLL Hell with the .NET Framework”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html
/dplywithnet.asp.

This chapter describes the options for deploying the .NET Framework itself, and then
examines how to deploy smart client applications based on the .NET Framework.
There are a number of options for deploying your applications, and each is discussed,
followed by a discussion in selecting the method most appropriate for your
environment. Finally the options for deploying application updates are examined
in some detail.

Deploying the .NET Framework
.NET smart client applications rely on the .NET Framework to function, and therefore
require it to be deployed on the client computer. The .NET Framework is deployed
using the.NET Framework redistributable package, which can be obtained from
Microsoft MSDN® or the Windows Update Web site.

You can also obtain the redistributable package from a product CD or DVD.
The package is available on the .NET Framework SDK, and on the Microsoft
Visual Studio® .NET 2003 DVD.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dplywithnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/dplywithnet.asp

 Chapter 7: Deploying and Updating Smart Client Applications 139

The .NET Framework redistributable package is actually a Windows Installer
package that is wrapped into a single, self-extracting executable file named
Dotnetfx.exe. The Dotnetfx.exe executable file starts Install.exe, which performs
platform checks, installs Windows Installer version 2.0 if necessary, and then starts
the Windows Installer package (.msi file).

For more information about using Dotnetfx.exe, see “.NET Framework
Redistributable Package 1.1 Technical Reference” at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnnetdep/html/dotnetfxref1_1.asp.

Preinstalling the .NET Framework
Today, many enterprises choose to deploy the .NET Framework as part of their
standard operating environment. You can deploy the .NET Framework across your
enterprise in two ways:
● Use technologies for pushing software to client computers, such as the Group

Policy functionality of Microsoft Active Directory® directory service, or Microsoft
Systems Management Server (SMS). Using Group Policy software deployment
to install the package over the network allows you to ensure that the package is
installed with elevated privileges. Similarly, using an enterprise push technology
such as SMS allows you to install the .NET Framework with the required
permissions. To install the .NET Framework using Group Policy or SMS, you
first need to extract the Windows Installer file from dotnetfx.exe. For more
details about how to do this, see “Redistributing the .NET Framework” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetdep/html
/redistdeploy.asp.

● Require that end users deploy the .NET Framework themselves by using
Windows Update, or by downloading the .NET Framework from a network
share, an internal Web site, or the Microsoft Web site. End users will need to have
administrative privileges on their computers to deploy the .NET Framework
because the .NET Framework Redistributable Package setup program requires
administrative privileges to install.

Installing the .NET Framework with an Application
In cases where you cannot determine which computers have the .NET Framework
preinstalled, you may choose to install the .NET Framework only when it is required
— in other words, when a .NET Framework application is installed. This approach is
particularly useful when you do not know the exact software configurations of the
computers you will be deploying to, and hence do not know if the .NET Framework
is preinstalled or not. For example, if you are an independent software vendor (ISV)
developing and packaging your smart client application for sale to a wide variety of
customers, you may not know whether or not your customers’ computers have the
.NET Framework installed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetdep/html/dotnetfxref1_1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetdep/html/dotnetfxref1_1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetdep/html/redistdeploy.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetdep/html/redistdeploy.asp

140 Smart Client Architecture and Design Guide

To ensure that the .NET Framework is installed along with your application, you
can use the setup.exe Bootstrapper sample. This sample checks to see if the .NET
Framework has already been installed, and if it hasn’t, the sample then installs the
.NET Framework before installing the application.

For more information about using the setup.exe Bootstrapper sample, see Chapter 3
of Deploying .NET Framework-based Applications at http://www.microsoft.com/downloads
/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en.

Deploying Smart Client Applications
As you design your smart client applications, you should consider how those
applications will be deployed. Wherever possible, you should try to minimize the
system impact of any installation. Doing so allows you to keep closer track of any
changes to the application and eases the problems of updating and uninstalling
applications. However, sometimes you will need to perform more complex
installations, for example when you are reusing unmanaged code components,
or when you need to store sensitive data securely in the registry.

A number of options are available to you when deploying smart client applications.
These include:
● No-touch deployment. With this approach, you copy the files to a Web server,

and the .NET Framework will automatically download the application and its
dependent assemblies to the client when the user clicks a link.

● No-touch deployment with an application update stub. With this approach,
you use no-touch deployment to download an application stub, which then
downloads the rest of the application to the local disk.

● Running code from a file share. With this approach, you copy the files to a file
share and run the application from the share.

● Xcopy. With this approach, you copy the files directly to the client. The .NET
Framework allows the application and all of its dependent assemblies to be
located in a single directory structure, so you don’t need to register anything
on the client.

● Windows Installer packages. With this approach, you package your application’s
files in a Windows Installer package, and the package is then installed on the
client.

Each approach has its own strengths and weaknesses. To help determine the most
appropriate deployment approach for your environment, you should examine each
in more detail.

http://www.microsoft.com/downloads/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en

 Chapter 7: Deploying and Updating Smart Client Applications 141

No-Touch Deployment
No-touch deployment allows your users to access your application on a Web server
by using a URL link to the application. To deploy an application by using no-touch
deployment, you simply need to copy the appropriate files to the Web server. When
a user browses to the location of the application by using a URL link, Microsoft
Internet Explorer downloads and runs the application. The application and its
dependent assemblies are downloaded to the client by using HTTP and are stored in
a special location called the assembly download cache. When the .NET Framework
determines whether or not an assembly on the Web server needs to be downloaded,
only the date-time stamp on the file is checked, and not the assembly version number.
If the assemblies on the server do not have a later date-time stamp than those on the
client, they will not be downloaded.

If you use no-touch deployment to deploy your smart client applications, you need to
provide the user with a URL to the location of the application on the Web server. With
this approach, no installation program is necessary on the client computer — all code
is downloaded as needed. Your application is automatically updated whenever
changes occur on the Web server. If files have changed, the newer versions are
downloaded as needed, just as with normal Web browsing.

No-touch deployment depends on the ability of the .NET Framework to interact with
Internet Explorer 5.01 or later to check for .NET assemblies that are being requested.
During a request, the executable file is downloaded to the download cache. A process
named IEExec then launches the application in a secure isolated environment
provided by the code access security infrastructure of the .NET Framework.

Note: The client will attempt to run the application only if it has both the .NET Framework and
Internet Explorer version 5.01 or later installed.

If you decide to use no-touch deployment to deploy an application that uses
application configuration files, you may need to configure the Web server directory to
allow for the download of the application’s configuration files, because this capability
is not enabled by default. Be sure to enable configuration files to be downloaded only
from the directory in which your application is located; otherwise, you may enable
private configuration files to be downloaded and introduce a security risk.

Note: Configuration files are actually downloaded twice when no-touch deployment is used: the first
time to check for binding information (for example, to control the exact versions of components that
the application uses) and the second to look for user-specific configuration information.

142 Smart Client Architecture and Design Guide

You can use no-touch deployment from within an application that is already
deployed to download and run code by using the Assembly.LoadFrom() method.
This technique can be used to download code that changes frequently, such as
business rules that change frequently, or to provide on-demand installation of some
other functionality.

No-touch deployment allows you to run localized versions of the application.
The current culture of the client computer is used to automatically download the
appropriate resource assemblies required to provide a localized version of the
application.

You can secure no-touch deployment applications by using the security mechanisms
provided by the Web server. For example, to restrict access to the application to
authorized users on an intranet, you can enable Windows Integrated Security on the
application directory on the Web server. To allow all users to access the application,
you can enable anonymous access to the application’s directory.

Note: If your Web server does not allow anonymous access or use Windows Integrated Security to
authenticate clients, your application may not be able to download the configuration file.

Limitations of No-Touch Deployment
No-touch deployment can be useful for deploying simple applications, or for
deploying parts of a more complex application. However, it is not an appropriate
deployment approach for the full installation of more complex smart client
applications for the following reasons:
● Restricted default security settings
● Unreliable offline functionality
● No transacted installations

Note: The ClickOnce technology in version 2.0 of the .NET Framework will remove the need to
manually make security policy changes to the client before the application is installed and run.
ClickOnce will provide a configurable mechanism to allow security policy changes to be made
automatically when the application is first installed from the Web server. ClickOnce will also provide
reliable offline functionality to smart client applications and will allow them to be fully integrated with
the Windows Shell.

This section examines the restrictions of no-touch deployment in more detail.

 Chapter 7: Deploying and Updating Smart Client Applications 143

Restricted Default Security Settings

Code access security grants permissions to the application according to the evidence
that the application presents. By default, the application’s location (the URL from
where it was started) is used to determine the permissions that it is granted. Unless
local security policy on the client computer is changed, no-touch deployment
applications are partially trusted, which means that they are only granted a limited
number of permissions.

By default, a smart client application deployed using no-touch deployment will not
be able to do the following:
● Write to the hard disk (except to isolated storage)
● Deploy assemblies to the global assembly cache
● Deploy or use unmanaged code
● Deploy components that require registration or make other registry changes
● Integrate with the Windows Shell (specifically, the install icons on the Start menu

and the Add or Remove Programs item in Control Panel)
● Access a database
● Interact with any other client applications, such as Microsoft Office applications
● Access Web services or other network-located resources that are not located on the

same server on which the application is deployed
● Perform other security operations outside those defined in the zone associated

with the deployment location

If your application requires more than the default set of permissions and you want
to use no-touch deployment, you will have to modify the security policy on the client
to grant the application the permissions to function properly. Such security policy
changes need to be propagated to client computers before you deploy your
application (for example, using Group Policy, a Windows Installer package,
or a batch file). These requirements reduce some of the benefits of the no-touch
deployment approach. For more information about deploying security policy,
see “.NET Framework Enterprise Security Policy Administration and Deployment”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/entsecpoladmin.asp.

As you design your applications, you should determine whether you can meet the
design specifications of your smart client application and comply with the partial
trust requirements of a no-touch deployment application. In general, no-touch
deployment and running code from a file share offer solutions that are easy to deploy,
but may restrict the functionality of the application to such an extent that they are
impractical for many smart client applications. However, if your application does
not require any additional permission, no-touch deployment may be an ideal
deployment mechanism for your application.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/entsecpoladmin.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/entsecpoladmin.asp

144 Smart Client Architecture and Design Guide

For more information about fully trusted and partially trusted applications,
see Chapter 4, “Security Considerations.”

Unreliable Offline Functionality

Another problem with deploying smart client applications using no-touch
deployment is that they do not function reliably offline. This problem is due
to a number of factors:
● Delayed downloading of assemblies. Assemblies are downloaded on demand

and are stored in the assembly download cache, which is managed as part of the
Internet Explorer cache. In some cases, when you run the application online, you
may not download all parts of the application, which will affect the application’s
ability to function fully when offline.

● Assemblies may be deleted. Because the assemblies reside in an area managed by
the Internet Explorer cache, if the cache is flushed for any reason, your application
files will be deleted.

● Applications are dependent on Internet Explorer offline settings. When
attempting to run an application offline, you must set Internet Explorer to run in
offline mode, even though your application does not run within Internet Explorer.
Also, if you do have connectivity, but Internet Explorer is inadvertently set to
offline mode, no checks for updates will be made to the server.

No Transacted Installations

With no-touch deployment, assemblies are downloaded when required to a cache
that can be flushed at any time. It is therefore not possible to be sure at any time that
all of the necessary code is installed on the local disk. For many organizations, this
uncertainty may be unacceptable for line-of-business applications.

No-Touch Deployment with an Application Update Stub
One of the main problems with using no-touch deployment is that, by default, the
application runs from the assembly download cache, and under partial trust, unless
the local security policy is modified. This can limit the functionality of your smart
client application, including its ability to function reliably offline. One way to
circumvent this problem is to use no-touch deployment initially to deploy an
application stub, which in turn automatically downloads and installs the rest of the
application to the local disk. The stub deploys the application to a specified location
on disk, such as “C:\Program Files”, and is therefore not subject to the limitations of
the Internet Explorer cache. When the application is run, it will be granted full trust
permissions because it is being run from the local disk, and can operate without the
restrictions associated with partial trust applications. An application update stub can
also be used to ensure that the application is reliably and automatically updated if
changes occur on the server.

 Chapter 7: Deploying and Updating Smart Client Applications 145

If you use this method to deploy your application, you need to ensure that the .NET
Framework security policy of the client computer is modified to allow the application
stub itself to run with sufficient permissions to download and store the application
artifacts on the local disk.

Designing application update stubs can be complex. To help you, Microsoft has
created the Updater Application Block, which you can use as a basis for designing
your own automatic updates solution. The Updater Application Block is designed to:
● Implement a pull-based update solution for .NET Framework applications.
● Use cryptographic validation techniques to verify the authenticity of application

updates before applying them.
● Perform post-deployment configuration tasks without user intervention.
● Help you write applications that automatically update themselves to the latest

available version.

The architecture of the Updater Application Block is shown in Figure 7.1.

Client

Administrator
uses Manifest

Utility

Application
UpdateUpdater

Controller XML
Configuration File Manifest

Server

Downloader

File Copy

Poll & Download

Validator

Post Processor
(optional)

Update
Controller

(Application or
separate EXE)

Figure 7.1
Updater Application Block architecture

146 Smart Client Architecture and Design Guide

For more information about the Updater Application Block, see “Updater Application
Block for .NET” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda
/html/updater.asp.

No-touch deployment with an application update stub supports the transacted
installation of your application. The Updater Application Block can help ensure
that the application is installed successfully in its entirety. To perform a transacted
installation, you will need to include code that, in addition to performing the
automatic updates, checks to see that all code has been installed on the local disk.
This code can be in the form of a manifest file along with code that determines that
each file in the manifest is on the local disk.

Combining no-touch deployment with an application update stub gives you many of
the benefits of simplified deployment and updates as well as the ability to run your
application in a fully trusted environment. Such benefits make this hybrid approach a
useful choice for the deployment of many smart client applications. However, it is not
the ideal choice in all situations. You still need to grant the application stub sufficient
permissions to allow the stub to download the rest of the application. Also,
applications installed using this approach do not provide Windows Shell integration
(specifically, integration with the Start menu or the Add or Remove Programs item
in Control Panel) unless you build this functionality into the application stub. Finally,
the deployment and updates will only occur under the security context of user. This
restriction can cause problems if your application needs to write to the registry, or to
a part of the file system that you secure from the user.

Running Code from a File Share
Running code from a file share is similar to no-touch deployment, except that you
provide users with a file share, rather than a URL, from which to deploy and run
the application. Code run from a file share is downloaded on demand and is executed
as appropriate. Because the code is running from the network, it runs as a partially
trusted application, generally running from the local intranet and receiving the local
intranet permission set, unless you change the security policy on the client.

Running code from a file share has many of the advantages and disadvantages of no-
touch deployment, although the code is not cached on the client as it is with no-touch
deployment. Because of the security restrictions associated with running code from a
file share, it is often not appropriate for deploying smart client applications.

Note: As with no-touch deployment, you can adopt a hybrid approach that combines running code
from a file share with an automatic update stub. For more information, see “No-Touch Deployment
with an Application Update Stub” earlier in this chapter.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/updater.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/updater.asp

 Chapter 7: Deploying and Updating Smart Client Applications 147

Xcopy Deployment
Xcopy deployment entails copying all of the files that the application consists of to
the client computer so that the application can be run. Smart client applications often
just consist of one or more executable files, one or more DLLs, and one or more
configuration files located in a directory hierarchy. By copying all of these files to
another computer, you essentially install the application. To uninstall the application,
you just remove all of the files from the computer.

In situations where you only need to modify the file system to install the application,
the Xcopy approach may be the best option. However, because you do not have
programmatic control over the installation process, the Xcopy approach does not
allow you to do the following:
● Deploy assemblies to the global assembly cache (and maintain references).
● Deploy COM objects.
● Deploy components that require registration or make other registry changes.
● Integrate with the Windows Shell.

If your application requires additional installation steps, you may be able to perform
these steps manually after copying the files. For example, if you need to modify the
registry, you can edit the registry on your target computer or import *.reg files to
ensure that the appropriate settings are in place. If you need to deploy assemblies
to the global assembly cache, you can use the Gacutil.exe utility with the /ir switch,
which installs assemblies into the global assembly cache with a traced reference.
These references can be removed when the assembly is uninstalled by using the
/ur switch.

Note: You can also use a drag-and-drop operation in Windows Explorer to move shared assemblies
into the Global Assembly Cache folder. However, you should avoid this method because it does not
implement reference counting. Without reference counting, the uninstall routine of another
application can cause an assembly required by your application to be removed from the global
assembly cache.

Xcopy deployment is suitable for some smart client applications, but in many cases
the additional steps required to get the application to function properly makes this
seemingly simple approach too laborious.

Windows Installer Packages
You can package your application for installation as a Windows Installer package.
This approach gives you the unrestricted ability to install anything on the target
computer, although the application is limited at run time by the security context of
the end user installing the application.

148 Smart Client Architecture and Design Guide

Windows Installer packages are very flexible and powerful, so you can use them to
install very complex applications that make a large number of configuration changes
to the client. However, they are also appropriate for applications with much simpler
installation requirements. Even if you have designed your application to have
minimal impact on the client when installed, you should consider using Windows
Installer packages, because they integrate with the Windows Shell by adding icons
on the Start menu and desktop and adding the application to the Add or Remove
Programs item in Control Panel. This integration allows you to control the
installation effectively and uninstall the application when required.

You can add any or all of the following to a Windows Installer package:
● Project output groups
● Services files and folders
● Assemblies
● Application resources
● Merge modules
● CAB files
● Dependencies
● Registry settings
● Project properties
● Custom actions
● User interface design settings

After you have created a Windows Installer package, you have a number of options
for distributing it to the client computer, including:
● Using enterprise push technologies such as SMS
● Using the Group Policy functionality of Active Directory to publish or assign the

packages
● Allowing users to install the package from media, a file share, or a URL

Using a push technology to install your Windows Installer packages allows you
to have some centralized control over when and where the installation occurs.
It also allows you to control which groups within the enterprise should have the
application, or particular versions of the application. You can, for example, ensure
that the installation occurs at a particular time of day for a particular group of users.
However, bear in mind that you may require significant hardware and network
bandwidth, depending on the size of your applications, to ensure that large-scale
deployments work effectively.

 Chapter 7: Deploying and Updating Smart Client Applications 149

One of the most significant advantages of a Windows Installer package is that if you
use Group Policy or SMS, you can install the application without the user requiring
administrative permissions. Windows Installer packages also automatically support
transacted installations. Either all of the files and configuration changes will be
installed by a Windows Installer package, or, if there is a problem, the installation
will be rolled back in its entirety by Windows Installer.

The flexibility of the Windows Installer package means that it can be appropriate for
installations of any complexity, from applications that simply write to the file system
and integrate with the Add or Remove Programs item in Control Panel, to those that
make many significant configuration changes to the client.

Note: If you use Windows Installer packages to deploy your application; you do not have to use the
same method to deploy updates. In many cases it is preferable to design your application to
automatically update itself after it is installed. For more details about configuring your applications
for automatic updates, see “Automatic Updates” later in this chapter.

Choosing the Right Deployment Approach
With so many deployment choices available for smart client applications, it can be
challenging to determine the correct choice for your environment. However, the
requirements of your application and the needs of your users will normally
determine the best approach.

The following table summarizes the features of each deployment approach.

Table 7.1: Deployment Approaches for Smart Client Applications

No touch
deployment

No-touch
deployment
with
application
update stub

Running
code from a
file share

Xcopy
deployment

Windows
Installer
package

Reliable offline
access

No Yes No Yes Yes

Full trust
application
functionality

Requires
client security
policy
changes

Yes Requires
client security
policy
changes

Yes Yes

(continued)

150 Smart Client Architecture and Design Guide

Table 7.1: Deployment Approaches for Smart Client Applications (continued)

No touch
deployment

No-touch
deployment
with
application
update stub

Running
code from a
file share

Xcopy
deployment

Windows
Installer
package

Non-power user
installation

Yes Depends on
requirements
of application

Yes Yes Depends on
requirements
of application
and
application
distribution
mechanism

Low system
impact

Yes Depends on
requirements
of application

Yes Yes Depends on
requirements
of application

Windows Shell
integration

No No No No Yes

Unrestricted
installation

No No No No Yes

Transacted
installation

No Yes No No Yes

Need to modify
.NET Framework
security policy
of the client

Yes —
if client needs
to run under
elevated
permissions

Yes —
for application
stub only.

Yes —
if client needs
to run under
elevated
permissions

No No

In many cases the simplest approach is to package your application using a Windows
Installer package. Windows Installer packages are highly flexible and allow you to
install applications of any complexity. If you use an enterprise push technology such
as Group Policy or SMS to deploy your Windows Installer package, you can also
install the applications under an administrative security context, regardless of the
security context of the user. No-touch deployment with an automatic update stub is
also a viable option when you want to allow your users to install their application by
clicking a URL, but you will have to make changes to the local security policy of the
target computer to ensure that your application stub application can run under
full trust.

 Chapter 7: Deploying and Updating Smart Client Applications 151

Deploying Smart Client Updates
After you have initially deployed your smart client applications, your work is not
done. The applications will need to be updated over time, as you upgrade application
functionality and fix bugs or address security vulnerabilities.

Depending on the situation, you may or may not use the same approach to update a
smart client application as you used to deploy it. For example, if you initially deploy
an application using a Windows Installer package, you may use automatic updates
to deploy updates. The specifics of your environment will often determine which
update methodology is most appropriate.

One common requirement when deploying updates is the ability to federate the
update infrastructure, so that updates do not run off a single server or server farm
controlled by a single entity. For example, if an ISV has created a smart client
application that is deployed across a customer’s enterprise, and the ISV releases an
update for the application, the enterprise may want to download and test that update
in their standard operating environment before it is propagated to all computers
running across the enterprise. Federating the update infrastructure makes it possible
to do so. For example, an update server could exist on the customer site that is
responsible for obtaining updates from the ISV. The clients running within the
enterprise would obtain the updates from the local update server, but only when
the IT administrators approved it. This approach can also be used to increase the
performance and scalability of the update infrastructure by relieving load of a single
server or server farm.

When deploying updates to an application, you have the following options:
● No-touch deployment. The updated assemblies are added to the Web server for

automatic download by the clients.
● Automatic updates. The application is configured to automatically download and

install updates from a server.
● Updates from a file share. The updated assemblies are added to a network share

for automatic download by the clients.
● Xcopy updates. The updates are copied directly to the clients.
● Windows Installer package deployment. The Windows Installer package is

updated, a new package is created, or a patch package is used to update the client.

It is useful to examine each of the options in more detail so that you can determine
which is most appropriate for your environment.

152 Smart Client Architecture and Design Guide

No-Touch Deployment Updates
If you have used no-touch deployment to deploy a simple application or parts of a
more complex application, you can update these assemblies simply by placing the
new files on the Web server. Before an assembly is loaded by the application, the
.NET Framework automatically checks the time stamp of the assembly locally and on
the Web server to see whether the assembly needs to be downloaded again, or
whether the assembly can simply be run from the user’s assembly download cache.

Note: No-touch deployment has a number of restrictions that make it unsuitable for deploying most
smart client applications. For more details, see “No-Touch Deployment” earlier in this chapter.

Although issuing updates using a no-touch deployment method is generally very
straightforward, your clients can have problems during an upgrade due to the lack
of support for transacted installations. If you update the directory while clients are
using the application, a client might download old code initially and then attempt
to download other code that has since been updated. This can lead to unpredictable
results and may cause your application to fail. The simplest solution to this problem
is to deploy any significant updates to a separate directory on the Web server, and
when deployment is complete, to change any links to the new location.

Note: If you choose to deploy your application using no-touch deployment with an automatic update
stub, see the following section, “Automatic Updates.”

Automatic Updates
In most cases, the best approach for patching, repackaging, and updating
applications is to build the updating infrastructure into the application itself. In this
case, the client application can be designed to automatically download and install
updates from a server, and the IT administrator releases these updates to the server
for clients to obtain. To achieve this, you can include code with an application so
that the application does the following:
● Automatically checks for updates.
● Downloads updates if available.
● Upgrades itself by applying those updates.

As you configure your application for automatic updates, it is important to ensure
that all of the updated files are downloaded to the client. This is particularly
important when you update strong-named assemblies. Assemblies that call strong-
named assemblies must specify the version of the strong-named assembly, so if you
update strong-named assemblies, you must also update any assemblies that call
them.

 Chapter 7: Deploying and Updating Smart Client Applications 153

When configuring transacted updates, you can use code to check that the updates are
installed locally, verifying them against a manifest. Often you will decide to install
the update in a separate directory, and then either remove the original directory after
a successful installation, or leave the original directory in place to provide a fallback
application.

For more details about automatic updates and the use of the Updater Application
Block, see “No-Touch Deployment with an Application Update Stub” earlier in this
chapter.

Note: Automatic updates will be simplified with the ClickOnce feature in version 2.0 of the
.NET Framework. As part of a deployment manifest, you will be able to specify whether and when
the application should check for updates, along with an alternate update location.

Updates from a File Share
When you copy assemblies to a file share, those assemblies are downloaded to
the client each time the application runs and are not cached. As with no-touch
deployment, updating an application that was originally deployed by running code
from a file share is simply a matter of adding the new code to the file share. The client
then downloads the new code the next time it runs.

Xcopy Updates
If you originally distributed your application using a file copy technique, you may
want to deploy updates in the same way. Regardless of the original deployment
mechanism, though, file copy can be one of the most effective approaches for
updating your application when the updates are relatively simple, such as
modifications to a configuration file. In such cases, deploying an update is simply
a matter of copying the new files and removing any old files that are no longer
required.

Usually you can update private assemblies by simply copying the new version of the
assembly over the old one. However, although you can use simple copy operations
for the initial deployment of a strong-named assembly, it is not possible to update the
strong-named assembly in this way and have your application (or other assemblies)
use it automatically. The strong name of the assembly is stored in the manifest of any
assembly that references it, and different versions of a strong-named assembly are
considered to be completely separate assemblies by the common language runtime
(CLR). Unless you specify otherwise, the CLR loads the same version of the strong-
named assembly that your application was originally built against.

154 Smart Client Architecture and Design Guide

Windows Installer Updates
Windows Installer offers a comprehensive solution for updating .NET Framework
applications. Several of its features are specifically designed to solve application
update problems.

Windows Installer packages have built-in support for version control. If you version
your application correctly, the Windows Installer package can automatically ensure
that the update happens correctly, and you can specify whether previous versions of
the application are to be removed when the new application is installed.

If you are using a push technology, such as SMS, to deploy these updates, you can
also control which users receive updates and when they receive them. This feature is
particularly useful if you are testing updates with a particular group of people before
deploying the updates more extensively.

If you plan to upgrade your application using Windows Installer technology, you
have three choices for implementing the upgrade:
● Build a patch package (.msp) and apply it to the currently installed application.
● Update the existing Windows Installer file.
● Create a completely new Windows Installer file.

In general, if you are going to use Windows Installer to deploy updates, you should
use either use a patch package or update the existing Windows Installer file. If you
create an entirely new Windows Installer file, the Microsoft Windows® operating
system will not recognize the package as an update, and the upgrade management
features of Windows will not function properly. However, in some cases, the changes
are so extensive that you may choose to forego this functionality and create a new
Windows Installer file.

Note: For more information about deploying updates using Windows Installer, see
Deploying .NET Framework-Based Applications at http://www.microsoft.com/downloads
/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en.

Choosing the Right Update Approach
In some cases, the update approach you choose is defined by the deployment
approach you chose for your application. However, the most appropriate approach is
often determined by the nature of the updates that you are deploying. For example,
you may just be copying new files over old ones, or you may want the updated
application to run alongside the old one. The update may involve adding new
assemblies to the global assembly cache or changing configuration information in
the registry. The updates are further complicated if you are deploying updates to
strong-named assemblies, because each assembly that calls the strong-named
assembly will use the version number in the call.

http://www.microsoft.com/downloads/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=5B7C6E2D-D03F-4B19-9025-6B87E6AE0DA6&displaylang=en

 Chapter 7: Deploying and Updating Smart Client Applications 155

Table 7.2 summarizes the options available for updating your applications and the
features that each support.

Table 7.2: Update Approaches for Smart Client Applications

No-touch
deployment
updates

Automatic
updates
with an
application
update stub

Updates
from a file
share

Xcopy
updates

Windows
Installer
updates

Non-power user
update

Yes Depends on
requirements
of application

Yes No Depends on
requirements
of application
and
application
distribution
mechanism

Centralized
management of
updates

Yes Yes Yes No Depends on
application
distribution
mechanism

Updates
downloaded when
application is run

Yes Yes No No No

Federated update
infrastructure

No Yes No No Yes

Per user/group
updates

Yes Yes No No Depends on
application
distribution
mechanism

Transacted
updates

No Yes No No Yes

Built-in support
for version
control

No No No No Yes

In many cases, automatic updates are the most effective approach for deploying
updates for your application. However, when deploying major updates, or updates
that involve complex configuration changes to the client, you may need to use
Windows Installer, which also has the benefit of automatic version control support.

156 Smart Client Architecture and Design Guide

Summary
Deploying smart client applications is much easier than deploying rich client
applications was in the past, due to the features of the .NET Framework. However,
there are a number of important choices you need to make for successful deployment,
both in how you design your application for easy deployment, and in which
deployment approach you choose for the application and for the .NET Framework
itself.

In most cases, the best choice for deploying the application is either to use a Windows
Installer package, or to use a combination of no-touch deployment and an application
update stub. You will need to consider how to maintain the application and deploy
updates effectively after it is deployed. Again, in most cases, the best choice is likely
to be either Windows Installer, or automated updates, controlled by the application
itself.

8
Smart Client
Application Performance

Smart client applications can provide a richer and more responsive user interface
than Web applications can, and can take advantage of local system resources. If a
large portion of the application resides on the user’s computer, the application does
not require constant round trips to a Web server. This can result in an increase in
performance and responsiveness. However, to realize the full potential of a smart
client application, you should carefully consider performance issues during the
application’s design phase. Addressing performance issues when you architect and
design your application can help you contain costs early and reduce the likelihood
of running into performance problems later on.

Note: Improving the performance of smart client applications is not limited to application design
issues. There are a number of steps that you can take throughout the application lifecycle to make
.NET code perform well. Although the .NET common language runtime (CLR) is very efficient at
executing code, there a number of techniques that you can use to increase the performance of
your code and prevent performance problems from being introduced at the code level. For more
information on these issues, see http://msdn.microsoft.com/perf.

Defining realistic performance requirements and identifying potential issues in the
design of your application is clearly important, but often performance problems
appear only after the code has been written, and is being tested. In this case, there
are tools and techniques that can help you track down performance problems.

This chapter examines how to how to design and tune your smart client applications
for optimum performance. It discusses a number of design and architectural issues,
including threading and caching considerations, and examines how to enhance the
performance of the Windows Forms portions of your application. The chapter also
looks at some of the techniques and tools that you can use to track down and
diagnose performance problems with your smart client applications.

http://msdn.microsoft.com/perf

158 Smart Client Architecture and Design Guide

Designing for Performance
There are many things you can do at an application design or architectural level
to ensure that a smart client application performs well. You should make sure to set
realistic and measurable performance goals as early as possible in the design phase,
which allows you to evaluate design tradeoffs and provide the most cost effective
way to address performance issues. Wherever possible, performance goals should
be based on real user and business requirements because these are strongly
influenced by the environment in which your application operates. Performance
modeling is a structured and repeatable process you can use to manage and ensure
your application meets the performance goals. For more information, see Chapter 2,
“Performance Modeling” in Improving .NET Application Performance and Scalability,
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html
/scalenetchapt02.asp.

Smart clients are usually part of a larger distributed application. It is important
to consider the performance of the smart client application in the context of the
complete application, including all of the network-located resources that the
client application uses. Fine tuning and optimizing every single component in an
application is usually not required or possible. Instead, your performance tuning
should be based on priorities, time, budget constraints, and risks. Pursuing high
performance for its own sake is not usually a cost-effective strategy.

Smart clients will also need to coexist with other applications on your user’s
computers. As you design your smart client applications, you should take into
account the fact that your applications will need to share system resources such as
memory, CPU time, and network utilization with the other applications on the client
computer.

Note: Information concerning the design of scalable, high performance remote services can be found
in Improving .NET Performance and Scalability, at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/scalenet.asp. The guide contains detailed information about how to
optimize your .NET code for best performance.

To design smart clients to perform efficiently, consider the following:
● Caching data where appropriate. Data caching can dramatically improve the

performance of a smart client application, allowing you to work with data locally
rather than having to retrieve it from the network constantly. However, data that
is sensitive or changes frequently is not usually appropriate for caching.

● Optimizing network communications. Communication through chatty interfaces
to remote tier services with multiple request/response round trips to perform a
single logical operation can consume system and network resources, resulting
in poor application performance.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt02.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp

 Chapter 8: Smart Client Application Performance 159

● Using threads efficiently. If you use a user interface (UI) thread to perform
blocking I/O bound calls, the UI may seem unresponsive to the user. Creating a
large number of unnecessary threads can result in poor performance because of
the overhead of creating and shutting down threads.

● Using transactions efficiently. If the client has local data, then using atomic
transactions can help you to ensure that that data is consistent. Because the data is
local, the transaction is also local rather than distributed. For smart clients that are
working offline, any changes made to the local data are tentative. The client needs
to synchronize the changes when it goes online again. For data that is not local,
it is possible to use distributed transactions in some cases (for example when
services are in the same physical location with good connectivity and where the
service supports it). Services such as Web services and Message Queuing do not
support distributed transactions.

● Optimizing application startup time. Fast application startup time allows the
user to begin interacting with the application more quickly, which gives the user
an immediate and favorable perception of application performance and usability.
Your application should be designed so that only those assemblies that are
required are loaded on application startup. Avoid using large numbers of
assemblies because loading each assembly incurs a performance cost.

● Managing available resources efficiently. Poor design decisions, such as
implementing finalizers when they are not needed, failing to suppress finalization
in the Dispose method, or failing to release unmanaged resources, can lead to
unnecessary delays in reclaiming resources and can create resource leaks that
degrade application performance. Applications that fail to properly release
resources, or explicitly force garbage collection, can prevent the CLR from
efficiently managing memory.

● Optimizing Windows Forms performance. Smart client applications rely on
Windows Forms to provide a rich and responsive user interface. There are a
number of techniques you can use to ensure that Windows Forms provide optimal
performance. These include reducing the complexity of the user interface, and
avoiding loading large amounts of data at once.

In many cases the perceived performance of your application from the user’s
perspective is at least as important as the actual performance of the application. You
can create an application that appears to perform much more efficiently to the user
by making certain changes to your design, such as using background asynchronous
processing (to keep the UI responsive), showing a progress bar to indicate the
progress of tasks, and providing the option for users to cancel long running tasks.

These issues are discussed in more detail in throughout this section.

160 Smart Client Architecture and Design Guide

Data Caching Guidelines
Caching is an important technique to improve application performance and provide
a responsive user interface. You should consider the following options:
● Caching frequently retrieved data to reduce roundtrips. If your application has

to interact frequently with a network service to retrieve data, you should consider
caching that data on the client, reducing the need to obtain the data repeatedly
over the network. This can increase performance substantially, providing near
instantaneous access to the data, and removing the risk of network delays and
outages that can adversely affect the performance of your smart client application.

● Caching read-only reference data. Read-only reference data is usually an ideal
candidate for caching. Such data is used to provide data for validation and user
interface display purposes, such as product descriptions, IDs, and so on. Because
this kind of data cannot be changed by the client, it can usually be cached without
any further special handling on the client.

● Caching data that is to be sent to network-located services. You should consider
caching data that is to be sent to a network-located service. For example, if your
application allows users to enter order information that consists of a number of
discrete items of data gathered over a number of forms, consider allowing the user
to enter all of the data, and then send it in one network call at the end of the entry
process.

● Minimizing caching of highly volatile data. Before you can cache any volatile
data, you need to consider how long it can be cached before it becomes stale
or otherwise unusable. If data is highly volatile and your application relies on
up-to-date information, it is likely that the data can only be cached for a short
time, if at all.

● Minimizing caching of sensitive data. You should avoid caching sensitive data
on the client because, in most cases, you cannot guarantee the physical security of
the client. However, if you do cache sensitive data on the client, you will generally
need to encrypt the data, which has its own performance implications.

Further issues surrounding data caching are covered in more detail in Chapter 2 of
this guide. Also see the “Caching” section of Improving .NET Application Performance
and Scalability, Chapter 3, “Design Guidelines for Application Performance”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html
/scalenetchapt03.asp) and Improving .NET Application Performance and Scalability,
Chapter 4, “Architecture and Design Review of .NET Application for Performance
and Scalability” (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag
/html/scalenetchapt04.asp).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt04.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt04.asp

 Chapter 8: Smart Client Application Performance 161

Network Communications Guidelines
Another decision you will face is how to design and work with network services,
such as Web services. In particular, you should consider the granularity,
synchronicity, and frequency of interaction with network services. For the best
performance and scalability, you should send more data in a single call rather than
send smaller amounts of data in several calls. For example, if your application allows
users to enter multiple items in a purchase order, it is better to collect data for all
items, and then to send the completed purchase order to the service at one time,
rather than send individual item details in multiple calls. In addition to reducing the
overhead associated with making many network calls, this also reduces the need for
complex state management within the service and/or the client.

Your smart client applications should be designed to use asynchronous
communication whenever possible, as this will help to keep the user interface
responsive and execute tasks in parallel. For more information on how to initiate
calls and retrieve data asynchronously using BeginInvoke and EndInvoke methods
see, “Asynchronous Programming Overview” (http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpovrasynchronousprogrammingoverview.asp).

Note: For more information on designing and building smart client applications that are occasionally
connected to the network, see Chapter 3, “Getting Connected” and Chapter 4, “Occasionally
Connected Smart Clients.”

Threading Guidelines
Using multiple threads within your application can be a good way to increase its
responsiveness and performance. In particular, you should consider using threads
to carry out processing that can safely be done in the background and that does not
require user interaction. Performing such work in the background allows the user
to continue working with the application and allows the application’s main
user-interface thread to maintain the application’s responsiveness.

Good candidates for processing that can be done on a separate thread include:
● Application Initialization. Perform lengthy initialization on a background thread

so that the user is able to interact with your application as soon as possible,
especially if an important or major part of the application functionality does
not depend on this initialization completing.

● Remote Service Calls. Make all remote calls over the network on a separate
background thread. It is difficult — if not impossible — to guarantee response
times for services located on the network. Performing these calls on a separate
thread reduces the risk of network outages or slowdowns adversely affecting
application performance.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrasynchronousprogrammingoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpovrasynchronousprogrammingoverview.asp

162 Smart Client Architecture and Design Guide

● IO Bound Processing. Processing, such as searching and sorting data on disk,
should be done on a separate thread. Typically, this kind of work is subject to the
constraints of the disk I/O sub-system, and not processor availability, so your
application can effectively maintain its responsiveness while this work is carried
out in the background.

While the performance benefits of using multiple threads can be significant, it is
important to note that threads consume resources of their own and using too many
threads can create a burden on the processor, which needs to manage context
switching between threads. To prevent this, consider using a thread pool instead
of creating and managing your own threads. Thread pools will efficiently manage
the threads for you, reusing existing thread objects and minimizing the overhead
associated with thread creation and disposal.

If the user experience is impacted by work performed by background threads,
you should always keep the user informed of the progress of the work. Providing
feedback in this way enhances the user’s perception of the performance of your
application and prevents him or her from assuming that nothing is happening.
Try to ensure that the user can cancel lengthy operations at any time.

You should also consider using the Idle event of the Application object to perform
simple operations. The Idle event provides a simple alternative to using separate
threads for background processing. This event fires when the application has no more
user interface messages to handle and is about to enter the idle state. You can perform
simple operations with this event and take advantage of user inactivity. For example:

[C#]
public Form1()
{
InitializeComponent();
Application.Idle += new EventHandler(OnApplicationIdle);
}

private void OnApplicationIdle(object sender, EventArgs e)
{
}

 Chapter 8: Smart Client Application Performance 163

[Visual Basic .NET]
Public Class Form1
 Inherits System.Windows.Forms.Form

 Public Sub New()
 MyBase.New()

 InitializeComponent()

 AddHandler Application.Idle, AddressOf OnApplicationIdle
 End Sub

 Private Sub OnApplicationIdle(ByVal sender As System.Object, ByVal e As
System.EventArgs)

 End Sub
End Class

Note: For more information on using multiple threads in Smart Clients, see Chapter 6,
“Using Multiple Threads.”

Transaction Guidelines
Transactions can provide essential support for ensuring that business rules are not
violated and that data consistency is maintained. A transaction ensures that a set of
related tasks either succeed or fail as a unit. You can use transactions to maintain
consistency between a local database and other resources, including Message
Queuing queues.

For smart client applications that need to work with offline cached data when
network connectivity is not available, you should queue the transactional data
and synchronize it with the server when network connectivity is available.

You should avoid using distributed transactions involving resources located on
the network, as these scenarios may lead to performance problems due to varying
network and resource response times. If your application needs to involve a network-
located resource in a transaction, you should consider using compensating
transactions, which allow your application to cancel a previous request when a
local transaction fails. Though compensating transactions may not be suitable for all
situations, they allow your application to interact with network resources within the
context of a transaction in a loosely coupled manner, reducing the chance that a
resource not under the control of the local computer can adversely affect the
performance of your application.

Note: For more information on the user of transactions in smart clients, see Chapter 3,
“Getting Connected.”

164 Smart Client Architecture and Design Guide

Optimizing Application Startup Time
Fast application startup time allows the user to begin interacting with the application
almost immediately, giving the user an immediate and favorable perception of your
application’s performance and usability.

When an application starts, first the CLR is loaded, then your application’s main
assembly, followed by all of the assemblies that are required to resolve the types of
objects referenced from your application’s main form. The CLR does not load all of
the dependent assemblies at this stage; it loads only the assemblies that contain the
type definitions for the member variables on your main form class. Once these
assemblies are loaded, the just-in-time (JIT) compiler compiles the code for the
methods as they are run, starting with the Main method. Again, the JIT compiler
does not compile all of the code in your assembly. Instead, the code is compiled as
required on a per method basis.

To minimize the startup time of your application, you should follow these guidelines:
● Minimize member variables in your application’s main form class. This will

minimize the number of types that have to be resolved when the CLR loads the
main form class.

● Minimize the immediate use of types from large base class assemblies, such as
the XML libraries or the ADO.NET libraries. These assemblies take time to load.
Using the application configuration classes and the trace switch features will bring
in the XML library. Avoid this if application startup time is a priority.

● Lazy load where possible. Fetch data only when demanded instead of loading
upfront and freezing the UI.

● Design your applications to use fewer assemblies. Applications with large
numbers of assemblies incur increased performance cost. The cost comes from
loading metadata, accessing various memory pages in pre-compiled images in the
CLR to load the assembly (if it is precompiled with the Native Image Generator
tool, Ngen.exe), JIT compile time, security checks, and so on. You should consider
merging assemblies based on their usage patterns to decrease the associated
performance cost.

● Avoid designing monolithic classes that combine the functionality of several
components in one. Factor the design into smaller classes that only need to be
compiled when they are actually called.

 Chapter 8: Smart Client Application Performance 165

● Design your applications to make parallel calls to network services during
initialization. Calls to network services that can run parallel during initialization,
can take advantage of asynchronous functionality provided by the service proxies.
This helps free the current executing thread and calls services concurrently to get
tasks done.

● Use NGEN.exe to compile and experiment with NGen and non-NGen
assemblies, and determine which saves the largest number of working set
pages. NGEN.exe, which ships with the .NET Framework, is used to pre-compile
an assembly to create a native image that is then stored in a special part of the
global assembly cache, ready for the next time it is required by an application.
Creating a native image of an assembly allows the assembly to load and execute
faster because the CLR does not need to dynamically generate the code and data
structures contained in the assembly. For more information, see the “Working Set
Considerations” and “NGen.exe Explained” sections in Chapter 5, “Improving
Managed Code Performance” of Improving. NET Application Performance and
Scalability, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag
/html/scalenetchapt05.asp.

Note: If you use NGEN to pre-compile an assembly, all of its dependent assemblies will be
immediately loaded.

Managing Available Resources
The Common Language Runtime (CLR) uses a garbage collector to manage object
lifetime and memory usage. This means that objects that are no longer reachable are
automatically collected by the garbage collector, with the memory being reclaimed
automatically. Objects can be no longer reachable for a number of reasons. For
example, there may be no references to the object or all references to the object may
be from other objects that can be collected as part of the current collection cycle,
While automatic garbage collection frees your code of the burden associated with
managing object deletion, it means that your code no longer has explicit control over
exactly when an object is deleted.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp

166 Smart Client Architecture and Design Guide

Consider the following guidelines to ensure that you manage available resources
effectively:
● Ensure that the Dispose method is called when the callee object provides one.

If your code calls objects that support the Dispose method, you should ensure
you call this method as soon as you finish using the object. Calling the Dispose
method ensures that unmanaged resources are proactively released instead of
waiting until garbage collection occurs. Some objects provide methods in addition
to the Dispose method that manage resources, such as the Close method. In these
cases, you should consult the documentation on how to use the additional
methods. For example, with the SqlConnection object, calling either Close or
Dispose is enough to proactively release the database connection back to the
connection pool. One way to ensure that Dispose is called as soon as you are done
with the object is to use the using statement in Visual C# .NET or Try/Finally
blocks in Visual Basic .NET.
The following code snippets demonstrate the use of Dispose.
Example of using statement in C#:

using(StreamReader myFile = new StreamReader("C:\\ReadMe.Txt")){
string contents = myFile.ReadToEnd();
//... use the contents of the file
} // dispose is called and the StreamReader's resources released

Example of Try/Finally block in Visual Basic .NET:

Dim myFile As StreamReader
myFile = New StreamReader("C:\\ReadMe.Txt")
Try
String contents = myFile.ReadToEnd()
'... use the contents of the file
Finally
myFile.Close()
End Try

Note: In C# and C++, Finalize methods are implemented as destructors. In Visual Basic .NET,
the Finalize method is implemented as an override of the Finalize subroutine on the Object base
class.

 Chapter 8: Smart Client Application Performance 167

● Provide Finalize and Dispose methods if you hold unmanaged resources across
client calls. If you create an object that accesses unmanaged resources in public or
protected method calls, then the application needs to control the lifetime of the
unmanaged resources. In Figure 8.1, the first case is a call to unmanaged resources
where the resource is opened, fetched, and closed. In this case, your object does
not need to provide Finalize and Dispose methods. In the second case, the
unmanaged resource is held across method calls; therefore, your object should
provide Finalize and Dispose methods so that the client can explicitly release
the resource as soon as the client has finished using the object.

Client
GetData()
 Opens connection
 Fetches data from unmanaged resource
 Closes connection

Don’t provide Finalize & Dispose

Client
Open()
 Open Connection

GetData()
 Fetch data from unmanaged resource

Do provide Finalize & Dispose

public void Dispose()
 { Dispose(true);
 GC.SuppressFInalize(); }

protected virtual void Dispose
(bool disposing)
 { Close connection here }

Finalize()
 { Dispose(false); }

* Simplified View of Dispose Pattern
Figure 8.1
Use of Dispose and Finalize method calls

168 Smart Client Architecture and Design Guide

Garbage collection is generally good for overall performance because it favors speed
over memory usage. Objects need to be deleted only when memory resources are
low; otherwise, all available application resources are used to the benefit of your
application. However, if your object maintains a reference to an unmanaged resource,
such as window handle, file, GDI objects, and network connections, then better
performance can be achieved if the programmer explicitly releases these resources
when they are no longer being used. If you are holding unmanaged resources across
client method calls, then the object should allow the caller to explicitly manage
resources using the IDisposable interface, which provides the Dispose method.
By implementing IDisposable, an object is announcing that it can be asked to clean
up deterministically, rather than waiting for garbage collection. The caller of an object
that implements IDisposable simply calls the Dispose method when it has finished
with the object so that it can free the resource as appropriate.

For more details on how to implement IDisposable on one of your objects, see
Chapter 5, “Improving Managed Code Performance,” in Improving .NET Application
Performance and Scalability, at http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/dnpag/html/scalenetchapt05.asp.

Note: If your disposable object derives from another object that also implements the IDisposable
interface, you should call the Dispose method of the base class to allow it to clean up its resources.
You should also call Dispose on all objects that are owned by your object that implements the
IDisposable interface.

The Finalize method also allows your object to explicitly release any resources that
it has a reference to when the object is being deleted. Due to the non-deterministic
nature of the garbage collector, in some cases the Finalize method may not be called
for a long time. In fact, it may never be called if your application terminates before
the object is deleted by the garbage collector. However, it important to use the
Finalize method as a backup strategy in case the caller doesn’t explicitly call the
Dispose method (both the Dispose and Finalize methods share the same resource
cleanup code). In this way, the resource is likely to be freed at some point, even if
this occurs later than is optimal.

Note: To ensure that the cleanup code in Dispose and Finalize isn’t called twice, you should call
GC.SuppressFinalize, which tells the garbage collector not to call the Finalize method.

The garbage collector implements the Collect method, which forces the garbage
collector to delete all objects pending deletion. This method should not be called from
within your application, as the collection cycle runs on a high priority thread. The
collection cycle may freeze all the UI threads, resulting in an unresponsive user
interface.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp

 Chapter 8: Smart Client Application Performance 169

For more information, see “Garbage Collection Guidelines,” “Finalize and Dispose
Guidelines,” “Dispose Pattern,” and “Finalize and Dispose Guidelines” in Improving
.NET Application Performance and Scalability at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp.

Optimizing Windows Forms Performance
Windows Forms provide a rich user interface for your smart client application and
there are a number of techniques you can use to help ensure that Windows Forms
provides optimal performance. Before discussing specific techniques, it is useful to
review some high-level guidelines that can increase Windows Forms performance
substantially.
● Beware of handle creations. Windows Forms virtualizes handle creation (that is,

it creates and re-creates window handle objects dynamically). Creating handle
objects can be expensive; therefore, avoid making unnecessary border style
changes or changing MDI parents.

● Avoid creating applications with very many child controls. The Microsoft®
Windows® operating system has a limit of 10,000 controls per process, but you
should avoid having many hundreds of controls on a form as each control
consumes memory resources.

The rest of this section discusses more specific techniques you can use to optimize
the performance of your application’s user interface.

Using BeginUpdate and EndUpdate
A number of Windows Forms controls (for example the ListView and TreeView
controls) implement BeginUpdate and EndUpdate methods, which suppress
repainting of the controls while the underlying data or control properties are
manipulated. Using the BeginUpdate and EndUpdate methods allows you to make
significant changes to your controls and avoid having the control repainting itself
constantly while those changes are applied. Such repainting leads to a significant
performance degradation and a flickering and unresponsive user interface.

For example, if your application has a tree control that requires a large number of
node items to be added, you should call BeginUpdate, add all of the required node
items, and then call EndUpdate. The following code example shows a tree control
being used to display a hierarchical representation of a number of customers along
with their order information.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt05.asp

170 Smart Client Architecture and Design Guide

[C#]
// Suppress repainting the TreeView until all the objects have been created.
treeView1.BeginUpdate();

// Clear the TreeView.
treeView1.Nodes.Clear();

// Add a root TreeNode for each Customer object in the ArrayList.
foreach(Customer customer2 in customerArray)
{
 treeView1.Nodes.Add(new TreeNode(customer2.CustomerName));

 // Add a child TreeNode for each Order object in the current Customer.
 foreach(Order order1 in customer2.CustomerOrders)
 {
 treeView1.Nodes[customerArray.IndexOf(customer2)].Nodes.Add(
 new TreeNode(customer2.CustomerName + "." + order1.OrderID));
 }
}

// Begin repainting the TreeView.
treeView1.EndUpdate();

[Visual Basic .NET]
 ' Suppress repainting the TreeView until all the objects have been created.
 TreeView1.BeginUpdate()

' Clear the TreeView
TreeView1.Nodes.Clear()

' Add a root TreeNode for each Customer object in the ArrayList
For Each customer2 As Customer In customerArray
 TreeView1.Nodes.Add(New TreeNode(customer2.CustomerName))

 ' Add a child TreeNode for each Order object in the current Customer.
 For Each order1 As Order In customer2.CustomerOrders
 TreeView1.Nodes(Array.IndexOf(customerArray, customer2)).Nodes.Add(_
 New TreeNode(customer2.CustomerName & "." & order1.OrderID))
 Next
Next

' Begin repainting the TreeView.
TreeView1.EndUpdate()

You should use the BeginUpdate and EndUpdate methods even when you do not
expect many objects to be added to the control. In most cases, you will not be aware
of the exact number of items to be added until runtime. Therefore, to cope elegantly
with an unusually large amount of data and for future requirements, you should
always call the BeginUpdate and EndUpdate methods.

 Chapter 8: Smart Client Application Performance 171

Note: Calling the AddRange method of many of the Collection classes used by Windows Forms
controls will automatically call BeginUpdate and EndUpdate for you.

Using SuspendLayout and ResumeLayout
A number of Windows Forms controls (for example the ListView and TreeView
controls) implement SuspendLayout and ResumeLayout methods, which prevent
the control from creating multiple layout events while the child controls are being
added.

If your controls programmatically add and remove child controls or perform
dynamic layout, then you should call the SuspendLayout and ResumeLayout
methods. The SuspendLayout method allows multiple actions to be performed on
a control without having to perform a layout for each change. For example, if you
resize and move a control, each operation would raise a separate layout event.

These methods operate in a similar manner to the BeginUpdate and EndUpdate
methods and provide the same benefits in terms of performance and user interface
stability.

The example below programmatically adds buttons to the parent form:

[C#]
private void AddButtons()
{
 // Suspend the form layout and add two buttons.
 this.SuspendLayout();
 Button buttonOK = new Button();
 buttonOK.Location = new Point(10, 10);
 buttonOK.Size = new Size(75, 25);
 buttonOK.Text = "OK";

 Button buttonCancel = new Button();
 buttonCancel.Location = new Point(90, 10);
 buttonCancel.Size = new Size(75, 25);
 buttonCancel.Text = "Cancel";

 this.Controls.AddRange(new Control[]{buttonOK, buttonCancel});
 this.ResumeLayout();
}

172 Smart Client Architecture and Design Guide

[Visual Basic .NET]
Private Sub AddButtons()
 ' Suspend the form layout and add two buttons
 Me.SuspendLayout()
 Dim buttonOK As New Button
 buttonOK.Location = New Point(10, 10)
 buttonOK.Size = New Size(75, 25)
 buttonOK.Text = "OK"

 Dim buttonCancel As New Button
 buttonCancel.Location = New Point(90, 10)
 buttonCancel.Size = New Size(75, 25)
 buttonCancel.Text = "Cancel"

 Me.Controls.AddRange(New Control() { buttonOK, buttonCancel })
 Me.ResumeLayout()
End Sub

You should use the SuspendLayout and ResumeLayout methods whenever you
add or remove controls, perform dynamic layout of the child controls, or set any
properties that affect the layout of the control, such as the size, location, anchor,
or dock properties.

Handling Images
If your application displays a large number of image files, such as .jpg and .gif files,
then you can improve display performance significantly by pre-rendering the images
into a bitmap format.

To use this technique, first load the image from file and then render to a bitmap using
the PARGB format. The following code sample loads a file from disk and then uses
the class to render the image into a pre-multiplied, alpha-blended RGB format.
For example:

[C#]
if (image != null && image is Bitmap)
{
Bitmap bm = (Bitmap)image;
Bitmap newImage = new Bitmap(bm.Width, bm.Height,
 System.Drawing.Imaging.PixelFormat.Format32bppPArgb);
using (Graphics g = Graphics.FromImage(newImage))
{
g.DrawImage(bm, new Rectangle(0,0, bm.Width, bm.Height));
}
image = newImage;
}

 Chapter 8: Smart Client Application Performance 173

[Visual Basic .NET]
 If Not(image Is Nothing) AndAlso (TypeOf image Is Bitmap) Then
 Dim bm As Bitmap = CType(image, Bitmap)
 Dim newImage As New Bitmap(bm.Width, bm.Height, _
 System.Drawing.Imaging.PixelFormat.Format32bppPArgb)

 Using g As Graphics = Graphics.FromImage(newImage)
 g.DrawImage(bm, New Rectangle(0, 0, bm.Width, bm.Height))
 End Using

 image = newImage
 End If

Use Paging and Lazy Loading
In most cases, you should retrieve or display data only when it is needed. If your
application needs to retrieve and display a lot of information, you should consider
breaking the data into pages and displaying the data one page at a time. This allows
your user interface to perform better because it does not have to display a large
amount of data. In addition, this can improve the usability of your application
because the user is not confronted with an abundance of data at once and can
navigate more easily to find the exact data he or she needs.

For example, if your application displays product data from a large product catalog,
you could display the items in alphabetical order with all the products beginning
with “A” displayed on one page and all the products beginning with “B" on the next
page. You could then allow the user to navigate directly to the appropriate page so
that he or she does not need to scroll through all of the pages to reach the data he
or she needs.

Paging the data in this way can also allow you to fetch the data in the background as
it is required. For instance, you might only need to fetch the first page of information
to display and allow the user to interact with. You can then fetch the next page of
data in the background ready for when the user needs it. This technique can be
particularly effective when combined with data caching.

You can also increase the performance of your smart client application by using lazy
loading techniques. Instead of immediately loading data or resources that you might
need at some point in the future, you load them as they are needed. You can use lazy
loading to increase the performance of your user interface when constructing large
lists or tree structures. In this case, you can load the data when the user needs to see
it, for example when a tree node is expanded.

174 Smart Client Architecture and Design Guide

Optimizing Display Speed
You can optimize your application’s display speed in a number of different ways,
according to the techniques you are using to display the user interface controls and
application forms.

When your application starts, you should consider displaying as simple a user
interface as possible. This will decrease startup time and present an uncluttered and
easy to use user-interface to the user. Also, you should try to avoid referencing classes
and loading any data at startup that is not immediately required. This will improve
the application and .NET framework initialization time and improve the display
speed of the application.

When you need to display a dialog box or form, you should keep them hidden until
they are ready to be displayed, to reduce the amount of painting necessary. This will
help to ensure that the form is only displayed once it has been initialized.

If your application has controls that contain child controls covering the entire client
surface area, you should consider setting the control background style to opaque.
This avoid redrawing the control’s background on every paint event. You can set the
control’s style by using the SetStyle method. Use ControlsStyles.Opaque
enumeration to specify an opaque control style.

You should avoid any unnecessary repainting of controls. One approach is to hide
controls while you are setting their properties. Applications that have complex
drawing code in the OnPaint event are able to redraw just the invalidated region of
the form, instead of painting the entire form. The PaintEventArgs parameter of the
OnPaint event contains a ClipRect structure that indicates which part of the window
is invalidated. This reduces the time that the user waits to see a completed display.

Use standard drawing optimization, such as clipping, double buffering, and
ClipRectangle. This will also help improve the display performance of your smart
client application by preventing unnecessary drawing operations for portions of the
display that are not visible or that require redrawing. For more information on
enhancing painting performance, see Painting techniques using Windows Forms for the
Microsoft .NET Framework at http://windowsforms.net/articles/windowsformspainting.aspx.

If your display includes animation or changes a display element often, you should
use double or multiple buffering to prepare the next image while the current one is
being painted. The ControlStyles enumeration in the System.Windows.Forms
namespace applies to many controls, and the DoubleBuffer member can help
prevent flickering. Turning on the DoubleBuffer style will cause your controls
painting to be done to an off-screen buffer and then painted all at once to the screen.
While this helps prevent flickering, it does use more memory for the allocated buffer.

http://windowsforms.net/articles/windowsformspainting.aspx

 Chapter 8: Smart Client Application Performance 175

Performance Tuning and Diagnosis
Tackling performance issues at the design and implementation stages is the most cost
effective way to meet your application’s performance goals. However, you can only
be truly effective in optimizing the performance of your applications if you test your
application’s performance often and as early in the development phase as possible.

While designing and testing for performance are both important, optimizing every
component and all of the code at these early stages is not an efficient use of resources,
and so should be avoided. Consequently, your application may suffer from
unexpected performance problems that you did not anticipate at the design stage.
For example, you may experience performance problems due to the unforeseen
interaction between two systems or components, or you may use pre-existing code
that does not perform as hoped. In this case, you need to track down the source of the
performance problem so that you can address it appropriately.

This section discusses a number of tools and techniques that will help you diagnose
performance issues, and tune your application for optimum performance.

Setting Performance Goals
As you design and architect your smart client application, you should carefully
consider the requirements in terms of performance, and define suitable performance
goals. When defining these goals, consider how you are going to measure the
application’s actual performance. Your performance metrics should clearly represent
the important performance characteristics of the application. Try to avoid ambiguous
or incomplete goals that cannot be accurately measured, such as “the application
must run fast” or “the application must load quickly.” You need to know the
performance and scalability goals of your application so that you can design to meet
them and plan your tests around them. Be sure that your goals are measurable and
verifiable.

Well-defined performance metrics allow you to track the performance of your
application accurately so that you can determine whether the application meets its
performance goals or not. These metrics should be included in your application’s test
plan, so that they can be measured during the testing phase of your application.

This section focuses on the definition of specific performance goals relevant to a
smart client application. If you are also designing and building the network services
that the client application will consume, you need to define appropriate performance
goals for these as well. In this case, you should be sure to consider the performance
requirements of the system as a whole and how the performance of each part of the
application relates to the other parts and to the system in its entirety.

176 Smart Client Architecture and Design Guide

Considering the User’s Perspective
As you determine suitable performance goals for a smart client application, you
should carefully consider the perspective of the user. For a smart client application,
performance is related to usability and user perception. For example, a lengthy
operation could be acceptable to the user as long as that user is able to keep working
and is provided with adequate feedback on progress of the operation.

When determining requirements, it is often useful to break an application’s
functionality into a number of usage scenarios or use cases. You should identify the
use cases and scenarios that are critical and required to meet specific performance
objectives. Tasks that are common to many use cases and that are performed often
should be designed to perform well. Similarly, tasks that demand the user’s complete
attention and from which they can’t switch to perform other tasks need to provide an
optimized and efficient user experience. Tasks that are not used very often or that do
not stop the user from performing other tasks may not need to be highly tuned.

For each performance-sensitive task that you identify, you should precisely define
what the user does and how the application responds. You should also determine
which network and client resources or components each task uses. This information
will influence the performance goals and will drive the tests that measure
performance.

Usability studies provide a very valuable source of information and can greatly
influence the definition of performance goals. A formal usability study can be
very helpful in determining how users perform their work, which usage scenarios
are common and which are not, what tasks the users perform often, and what
characteristics of the application are important from a performance perspective.
If you are building a new application, you should consider providing a prototype or
mock-up of the application to allow rudimentary usability testing to be carried out.

Considering the Application Operating Environment
It is important to evaluate the environment in which your application will be
operating, as this may impose constraints on your application that must be reflected
in the performance goals you set.

Network-located services may impose performance constraints on your application.
For example, you may be required to interact with a Web service over which you
have no control. In such cases, it is important to determine the performance of the
service and to determine whether this will have an effect on the performance of
your client application.

 Chapter 8: Smart Client Application Performance 177

You should also determine how the performance of any dependent services and
components may vary with time. Some systems experience fairly constant usage
while other experience wildly fluctuating usage at certain times of the day or week.
These differences could adversely affect the performance of your application at
critical times. For example, a service that provides application deployment and
update services may be slow to respond on Monday morning at 9:00 AM as all
users upgrade to the latest version of an application.

It is also important to accurately model the performance of all dependent systems
and components, so that your application can be tested in an environment that
closely mimics the real environment in which it will be deployed. For each system,
you should determine the performance profile and the minimum, average, and peak
performance characteristics. You can then use this data as appropriate when defining
the performance requirements for your application.

You should also carefully consider the hardware on which your application will run.
You will need to determine the target hardware configuration, in terms of processor,
memory, graphics capability, and so on — or at least a minimum configuration below
which you cannot guarantee performance.

Often the business environment in which your application will operate will dictate
some of the more exacting performance requirements. For example, an application
that executes real-time stock trading will be required to execute these trades and
display all of the relevant data in a timely manner.

Performance Tuning Process
Performance tuning your application is an iterative process. This process consists of a
number of stages that are repeated until the application meets its performance goals.
(See Figure 8.2.)

Establish
Baseline

Tune Application

Test and Measure Analyze Results

Collect Data

Figure 8.2
Performance tuning process

178 Smart Client Architecture and Design Guide

As Figure 8.2 illustrates, performance tuning requires that you complete the
following processes:
● Establish Baseline. Before you begin tuning your application for performance,

you must have a well-defined baseline for the performance goals, objectives, and
metrics. This could include specifics such as application working set size, time to
load data (for example, a catalogue), transaction duration, and so on.

● Collect Data. You will need to gauge your application’s performance by
measuring it against the performance goals that you have defined. Performance
goals should embody specific and measurable metrics that allow you to quantify
your application’s performance at any point in time. To allow you to collect
performance data, you may have to instrument your application so that the
required performance data can be published and collected. Some of the options
that you have to accomplish this are discussed in detail in the next section.

● Analyze Results. After you have collected your application’s performance data,
you will be able to prioritize your performance tuning effort by determining
which application features require the most attention. In addition, you can use this
data to determine where any performance bottlenecks are. Often, you will only be
able to determine the exact location of the bottleneck by gathering more detailed
performance data: for example, by using application instrumentation.
Performance profiling tools may help you to identify the bottleneck.

● Tune Application. After you have identified a bottleneck, you will probably
need to modify the application or its configuration to try and solve the problem.
You should aim to minimize changes so that you can determine the effect of the
changes on the application’s performance. If you make more than one change at
the same time, it can be difficult to determine what effect each change had on the
application’s overall performance.

● Test and Measure. After you have changed your application or its configuration,
you should test it again to determine what effect your changes have and to allow
new performance data to be gathered. Performance work often requires
architectural or other high-impact changes so thorough testing is critical. Your
application’s test plan should exercise the full range of functionality that your
application implements, for all anticipated scenarios and on client machines
configured with the appropriate hardware and software. If your application uses
network resources, you should load these resources so that you can gain accurate
measurements for how your application performs in such an environment.

The above process will allow you to focus on specific performance problems by
measuring your applications overall performance against specific goals.

 Chapter 8: Smart Client Application Performance 179

Performance Tools
There are number of tools available to you which can help you to collect and analyze
your application’s performance data. Each of the tools described in this section have
different functionality that you can use to measure, analyze, and find performance
bottlenecks in your application.

Note: In addition to the tools described here, there are a number of other options and third-party
tools available. For a description of other logging and exception management options, see the
Exception Management Architecture Guide, at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnbda/html/exceptdotnet.asp.

You should carefully consider your exact requirements before deciding on which tools are most
appropriate to your needs.

Using Performance Logs and Alerts
Performance Logs and Alerts is an administrative performance monitoring tool that
ships as part of the Windows operating system. It relies on performance counters that
are published by the various Windows components, subsystems, and applications to
allow you to track resource usage and to plot them graphically against time.

You can use Performance Logs and Alerts to monitor standard performance counters,
such as memory usage or processor usage, or you can define your own custom
counters to monitor application-specific activity.

The .NET CLR provides a number of useful performance counters that can give you
insight into how well your application is performing. Some of the more relevant
performance objects are:
● .NET CLR Memory. Provides data on the memory usage of a managed .NET

application, including the amount of memory that your application is using and
the time spent garbage collecting unused objects.

● .NET CLR Loading. Provides data on the number of classes and application
domains that your application is using and the rate at which they are being loaded
and unloaded.

● .NET CLR Locks and Threads. Provides performance data related to the threads
used within your application, including the number of threads and the rate of
contention between threads trying to get simultaneous access to a protected
resource.

● .NET CLR Networking. Provides performance counters that relate to sending and
receiving data over the network, including the number of bytes sent and received
per second and the number of active connections.

● .NET CLR Exceptions. Provides reports on the number of exceptions being
thrown and caught by your application.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp

180 Smart Client Architecture and Design Guide

To learn more about these counters, their thresholds, what to measure and how to
measure them see the section, “CLR and Managed Code” in Chapter 15, “Measuring
.NET Application Performance” of Improving .NET Application Performance and
Scalability, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html
/scalenetchapt15.asp.

Your application can also provide application-specific performance counters that you
can easily monitor by using Performance Logs and Alerts. You can define a custom
performance counter as shown in the following example:

[C#]
PerformanceCounter counter = new PerformanceCounter("Category",
 "CounterName", false);

[Visual Basic .NET]
Dim counter As New PerformanceCounter("Category", "CounterName", False)

Once the performance counter object is created, you can specify a category for your
custom performance counters and keep all related counters together. The
PerformanceCounter class is defined in the System.Diagnostics namespace, along
with a number of other classes that you can use to read and define performance
counters and categories. For more information on creating custom performance
counters see, Knowledge Base article 317679, “How to create and make changes to a
custom counter for the Windows Performance Monitor by using Visual Basic .NET,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;317679.

Note: To register a performance counter, you must first register the category. You must have
sufficient permissions to register a performance counter category, which may affect how you need to
deploy your application.

Instrumentation
There are a number of tools and technologies you can use to help instrument your
application and generate information needed to measure the application
performance. These tools and technologies include:
● Event Tracing for Windows (ETW). This ETW subsystem provides a low system

overhead (as compared to Performance Logs and Alerts) means of monitoring
performance of a system under load. This is primarily for server applications that
must frequently log events, errors, warnings, or audits. For more information, see
“Event Tracing” in the Microsoft Platform SDK at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/perfmon/base/event_tracing.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt15.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt15.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;317679
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/perfmon/base/event_tracing.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/perfmon/base/event_tracing.asp

 Chapter 8: Smart Client Application Performance 181

● Enterprise Instrumentation Framework (EIF). The EIF is an extensible and
configurable framework that you can use to instrument your smart client
application. It provides an extensible event schema and unified API that uses
existing events, logging, and tracing mechanisms built into Windows, including
the Windows Management Instrumentation (WMI), the Windows Event Log,
and Windows Event Tracing. It greatly simplifies the coding required to publish
application events. If you are planning to use EIF, you need to install EIF on the
client computer by using the EIF .msi. If you want to use the EIF in your smart
client application, you need to consider this requirement when you decide how
to deploy your application. For more information, see “How To: Use EIF” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html
/scalenethowto14.asp.

● Logging Application Block. The Logging Application Block provides extensible
and reusable code components to help you produce instrumented applications. It
builds on capabilities of the EIF to provide functionalities such as enhancements to
the event schema, multiple log levels, additional event sinks, and so on. For more
information, see the “Logging Application Block” at http://msdn.microsoft.com
/library/default.asp?url=/library/en-us/dnpag/html/Logging.asp.

● Windows Management Instrumentation (WMI). The WMI component is part of
the Windows operating system and provides programming interfaces for
accessing management information and control in an enterprise. This is most
commonly used by system administrators to automate administration tasks using
scripts that invoke the WMI component. For more information, see Windows
Management Instrumentation at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/wmisdk/wmi/wmi_start_page.asp.

● Debug and Trace Classes. The .NET framework provides Debug and Trace
classes under the System.Diagnosis to instrument your code. The Debug class is
primarily used for printing debug information and checking for assertions. The
Trace class allows you to instrument release builds to monitor the health of your
application at run time. In Visual Studio .NET, tracing is enabled by default. When
using the command-line build you must add the /d:Trace flag for the compiler or
#define TRACE in the your Visual C# .NET source code to enable tracing. For
Visual Basic .NET source code, you must add /d:TRACE=True for the command-
line compiler. For more information, see Knowledge Base article 815788,
“HOW TO: Trace and Debug in Visual C# .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;815788.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto14.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/Logging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/Logging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_start_page.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/wmi_start_page.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;815788
http://support.microsoft.com/default.aspx?scid=kb;en-us;815788

182 Smart Client Architecture and Design Guide

CLR Profiler
The CLR Profiler is a memory profiling tool provided by Microsoft and available for
download from MSDN. It enables you to look at the managed heap of your
application’s process and investigate the behavior of the garbage collector. Using this
tool, you can obtain useful information about the execution, memory allocation, and
memory consumption of your application. This information can help you understand
how your application is using memory and how you can optimize your application’s
memory use.

The CLR Profiler is available at http://msdn.microsoft.com/netframework/downloads/tools
/default.aspx. Also see “How to use CLR Profiler” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnpag/html/scalenethowto13.asp?frame=true for details on
how to use the CLR Profiler tool.

The CLR Profiler logs memory consumption and garbage collector behavior
information in a log file. You can then analyze this data with the CLR Profiler by
using number of different graphical views. Some of the more important views are:
● Allocation Graph. Shows the call stack for how objects were allocated. You can

use this view to see the cost of each allocation by method, isolate allocations that
you were not expecting, and view possible excessive allocations by a method.

● Assembly, Module, Function, and Class Graph. Shows which methods caused
the loading of which assemblies, functions, modules, or classes.

● Call Graph. Lets you see which methods call which other methods and how
frequently. You can use this graph to determine the cost of library calls and which
methods are called or how many calls are made to a specific method.

● Time Line. Provides a text-based, chronological, hierarchical view of your
application’s execution. Use this view to see what types are allocated and their
size. You can also use this view to see which assemblies are loaded as result of
method calls and to analyze allocations that you were not expecting. You can
analyze the use of finalizers and to identify methods where Close or Dispose have
not been implemented or called, thereby causing bottlenecks.

You can use CLR Profiler.exe to identify and isolate problems related to garbage
collection. These include memory consumption issues such as excessive or unknown
allocations, memory leaks, long-lived objects, and the percentage of time spent
performing garbage collection.

Note: For more detailed information on how to use the CLR Profiler tool, see “Improving .NET
Application Performance and Scalability” at http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/scalenethowto13.asp?frame=true.

http://msdn.microsoft.com/netframework/downloads/tools/default.aspx
http://msdn.microsoft.com/netframework/downloads/tools/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto13.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto13.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto13.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenethowto13.asp?frame=true

 Chapter 8: Smart Client Application Performance 183

Summary
To fully realize the potential of a smart client application, you need to carefully
consider performance issues during the application’s design phase. By addressing
these issues at an early stage, you can contain costs during the application design
process and reduce the likelihood of running into performance problems late in the
development cycle.

This chapter examined different techniques that you can use as you architect and
design your smart client applications to ensure that you optimize their performance.
It has also looked at a number of tools and techniques you can use to determine
performance problems within your smart client applications.

References
For more information, see the following:
● http://msdn.microsoft.com/perf
● http://www.windowsforms.net/Default.aspx
● http://msdn.microsoft.com/vstudio/using/understand/perf/
● http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetcomp/html

/netcfimproveformloadperf.asp
● http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html

/highperfmanagedapps.asp
● http://msdn.microsoft.com/msdnmag/issues/02/08/AdvancedBasics/default.aspx
● http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/04/01/NET

/toc.asp?frame=true
● http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/03/02

/Multithreading/toc.asp?frame=true

http://msdn.microsoft.com/perf
http://www.windowsforms.net/Default.aspx
http://msdn.microsoft.com/vstudio/using/understand/perf/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetcomp/html/netcfimproveformloadperf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetcomp/html/netcfimproveformloadperf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/highperfmanagedapps.asp
http://msdn.microsoft.com/msdnmag/issues/02/08/AdvancedBasics/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/04/01/NET/toc.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/04/01/NET/toc.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/03/02/Multithreading/toc.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/03/02/Multithreading/toc.asp?frame=true

Collaborators and Reviewers

● Special thanks to our reviewers: Mark Boulter, Jamie Cool, Keith Yedlin,
Richard Turner; Ivan Medvedev; Ram Singh, Philip Vaughn; Andy Dunn,
Devendra Tiwari, Eric Leonard, Ken Perilman, Per Vonge Nielsen,
Naveen Yajaman, and Chris Sells

● Thanks to our editors and production team for helping to ensure a quality
experience for the reader: Sharon Smith, Microsoft; Susan Filkins, Entirenet; and
Tina Burden McGrayne, Entirenet; and Sanjeev Garg, Satyam Computer Services

● Thanks to our test team: Prashant Bansode and Guru Shankar Sundaram,
InfoSys Technologies Limited

● Thanks to our product management: Eugenio Pace, Microsoft; and Vasu Vijay,
Electronic Data Systems

Index

A
AccceptChanges method, 26
ACID transactions

connectivity issues, 48
data-centric strategy, 55

ACLs, 92
AddRange method, 171
ADO.NET

AccceptChanges method, 26
DataSets to manage data, 25
IList interface, 32
startup time, 164

AllowPartiallyTrustedCallersAttribute, 109
anonymous users, 92
application blocks

Authorization and Profile Application Block, 97
Caching Application Block, 22–23
further information, 16
Logging Application Block, 181
Updater Application Block, 145–146, 153

application fragility, 2, 6
and .NET Framework, 138

Application object, 162
application performance, 157–183. See also

instrumentation; performance tools
application startup time optimizing, 164–165
data caching guidelines, 160
designing for performance, 158–174
managing available resources, 165–169
network communication guidelines, 161
performance tuning and diagnosis, 175–182

goal setting, 175–177
operating environment, 176–177
performance tools, 179–182
 CLR Profiler, 182
 instrumentation, 180–182
 logs and alerts, 179–180
process, 177–178
user’s perspective, 176

threading guidelines, 161–163
transaction guidelines, 163
Windows Forms performance, 169–174

Application.DoEvents, 116
applications. See also smart client applications;

thin client applications
adding authorization to, 94–95
deploying with .NET Framework, 137–138
deployment scenarios, 106–107

applications (continued)
initializing, 161
isolated, 138
Office smart client applications, 8–9
optimizing startup time, 164–165
rich client applications, 1–3, 6, 8
two-tier applications, 2
Windows smart client applications, 8

APTCA, 109
architecture

Caching Application Block, 22–23
challenges of smart clients, 11–13
occasionally connected design strategies, 54
performance tuning process, 177
service-oriented, 45
Updater Application Block, 145–146
Windows Forms data binding, 28–29

assemblies
code access security, 103
described, 102
DPAPI, 101
fully trusted applications, 111
fully trusted assemblies, 108–109
FxCop, 80
global assembly cache, 138, 143, 147
interop assemblies, 42
isolated applications, 138
no-touch deployment, 141, 144, 152
optimizing application startup, 164
permission assignments, 104–105
private keys, 102
self-describing, 4, 137
serviced components, 41–42
strong-named assemblies, 109–111, 152
testing, 110
Thread object, 121
versioning, 49
xcopy updates, 153

AssemblyInfo.cs, 109
Assembly.LoadFrom() method, 142
Assert, 108
AsyncCallback object, 126
Asynchronous Call pattern, 125
asynchronous calls

calling Web services, 125–126
delegates, 124–125
described, 114
network communications guidelines, 161

188 Smart Client Architecture and Design Guide

asynchronous communication
network communications guidelines, 161
for service-oriented approach, 59–60

auditing and logging, 79
authentication, 79–91. See also custom authentication;

network access authentication types
choosing the right model, 83–84
gathering currently logged-on user

credentials, 89
gathering user credentials with a logon

dialog box, 90
guidelines, 91
HTTP basic authentication, 81, 85
HTTP digest authentication, 86
network access authentication types, 84–88
overview, 79, 80
protocols, 84
scenarios, 80–83
user credentials, 89–90

authorization, 92–97
adding to applications, 94–95
Authorization and Profile Application Block, 97
Authorization Manager, 93
functionality when client is offline, 96–97
guidelines, 95–96
overview, 79
resource-based authorization, 92
role-based authorization, 93
types of, 92–94

Authorization Manager, 93
authorized user access, 100
automatic connection management, 63–64

B
background threads, 114–115

delegates, 119
baselines, 177–178
basic authentication

vs. HTTP digest authentication, 86
Web services, 85
when not to use, 81

BeginUpdate method, 169–171
Binding object

custom formatting and data type
conversion, 33–34

in Windows Forms controls, 30–31
in Windows Forms data binding, 29

BindingContext object, 29
BindingPositionChanged method, 33
blocked calls, 114
Boulter, Mark, vii
business roles, 21
business rule conflicts, 65–69

C
Caching Application Block, 22–23
caching data. See data caching
calculationMethod, 122
CalculationStatusChanged event handler, 134–135
CalculationTask class, 129–133
calls

asynchronous, 161
authenticated network calls, 80, 83
blocked calls, 114
call graphs, 182
Demand/Assert pattern, 108
distributed network calls, 48
DTOs, 26
I/O bound calls, 159
MSMQ, 44
nonblocking calls, 114
parellel calls, 165
remote object calls, 118
remote service calls, 161
synchronous vs. asynchronous, 114
unmanaged resources, 167–168

certificate authorities, 87
certificate-based authentication, 87
change and configuration management, 80
chapter outlines, 14–16
child controls, 169
classes

Collection class, 171
IList interface, 32
PerformanceCounter class, 180
System.Messaging namespace, 45
Windows Forms, 27

ClickOnce, 107, 142
clients

custom reconciliation on, 70
dependencies, 75–76

CLR
CLR Profiler tool, 182
lazy registration, 41
performance issues, 165–169

CLR Profiler tool, 182
CLR Profiler.exe, 182
coarse-grained, encapsulated messages, 48
code access permissions, 103
code access security

application deployment scenarios, 106–107
assemblies, 103
authorization guidelines, 96
avoid full trust for restricted zones, 111
avoid permission demands that raise

exceptions, 107–108
components, 103
Demand/Assert pattern, 108–109

 Index 189

code access security (continued)
described, 102–103
designing for, 105–111
fully trusted applications, 111–112
fully trusted assemblies, 108–109
partially trusted applications, 106–111
partially trusted callers, 108–109
permission resolutions, 104–105
strong-named assemblies, 109–111, 152

code groups, 103
code identity permissions, 103
collaborators and reviewers, 185
Collection class, 171
collection objects, 32
COM+ services, 40–41

DCOM, 42
COM difficulties, 137, 147
Common Language Runtime. See CLR
communication options

choosing, 47
getting connected, 40–47
for performance, 157
recommendations, 48–49
service-oriented approach, 59–60

completion port threads, 120
complex network interactions, 60–61
composite applications, 12–13
concurrency. See data concurrency
conflict resolution, 69–70
connections

changes to, 63–64
occasional, 62–64

ConstraintCollection, 25
controls

binding to DataSets, 31
Windows Forms controls, 30–31

convergence, 55
ConvertEventArgs object, 33–34
counters, 179–180
coupling

data-centric approach, 56
loose coupling, 57–58
loosely and tightly coupled systems, 39–40

CRUD-like Web services, 71–72
crypt32.dll, 101
CryptProtectData method, 101
CryptUnprotectData method, 101
CurrencyManager object

IList interface, 32–33
in Windows Forms data binding, 29

current titles, 188–191
custom authentication, 88

GenericPrincipal, 92
role checks, 95

custom formatting and data type conversion, 33–34
CustomerController object, 36–37
customer.Name member, 36

D
DACLs, 92, 99, 102
data

binding to Windows Forms controls, 30–31
and business rule conflicts, 65–69
convergence, 55
merging with Datasets, 26
partitioning and locking, 66–67
read-only reference data, 18
sensitive data overview, 79
stale, 67–69
tentative changes, 21
tracking unconfirmed or tentative, 67
transient data, 19

data binding. See Windows Forms
data caching, 19–21

adding capabilities, 61–62
desirability of, 52
global assembly cache, 138
guidelines, 160
long-term, 20
metadata, 20–21
for performance, 158
security needs of, 20
short-term, 19
workflow, 22

data concurrency
challenges of smart clients, 12
data handling, 24–25
pessimistic and optimistic locking, 66–67
pessimistic locking, 66–67

data handling, 17–37
ADO.NET DataSets, 25
binding controls to DataSets, 31
binding data to Windows Forms controls, 30–31
Caching Application Block, 22–23
caching data, 19–21
custom formatting and data type

conversion, 33–34
data concurrency, 12, 24–25
DataSets, 26–27
merging data with Datasets, 26
MVC pattern to validate data, 34–37
navigating through a collection, 32–33
read-only reference data, 18
transient data, 19
types of data, 18–19
user interface updating, 37
Windows Forms data binding, 27–28

190 Smart Client Architecture and Design Guide

Data Protection API. See DPAPI
Data source object, 29
data transfer objects. See DTOs
data validation

input, 97–98
with MVC pattern, 34–37
overview, 79
reference data, 18
user credentials, 89

data-centric approaches, 55–56
DataColumnCollection, 25
datasets, 49
DataSets

ADO.NET, 25
binding controls to, 31
described, 25
increasing performance of, 26–27
merging data with, 26

DataTable object, 25
DCOM

COM+ services, 42
rich client applications, 2

Debug class, 181
declarative demands

authorization, 94
authorization guidelines, 96

DefaultCredentials, 85
Delegate Asynchronous Call pattern, 132
delegates, 122–125

asynchronous calls, 124–125
background threads, 119

Demand/Assert pattern, 108–109
dependencies, 73–76

handling at the client, 75–76
handling at the server, 74–75
minimizing network complexity, 61
types of, 74

deploying and updating smart client applications.
See smart client applications

deployment choices, 149–150
discretionary access control lists. See DACLs
display speed, 174
Dispose method, 166–168
distributed ACID transactions

connectivity issues, 48
getting connected, 48

distributed transactions, 163
Dotnetfx.exe, 139
DPAPI, 101
DTOs

described, 26
to increase performance of, 26–27

E
EFS, 100
EIF, 181
Encrypting File System. See EFS
encryption tools, 98, 101
EndUpdate method, 169–171
Enterprise Instrumentation Framework. See EIF
ETW, 180
Event Tracing for Windows. See ETW
evidence, 103
exceptions

APTCA, 109
management overview, 65–66, 80
management tools, 179
permission demands, 107–108

expiration options, 23

F
file shares, 146, 153
FileIOPermission, 103
filtering, 56
Finalize method, 166–168
fire-and-forget requests, 60
foreground threads, 114–115
Format event, 33–34
forward, vii
forward dependencies, 74
FullTrust permission set, 103
fully trusted applications, 101

described, 105
designing, 111
no-touch deployment, 146

fully trusted assemblies, 108–109
FxCop, 80

G
Gacutil.exe, 147
garbage collection. See GC
gatekeepers, 95
GC

CLR Profiler tool, 182
performance issues, 165–169

GenericIdentity, 88
GenericPrincipal interface implementation, 92
GenericPrincipal object, 95
geographic constraints on data caching, 20
GetChanges method, 26–27

 Index 191

getting connected, 39–50
communication options, 40–47
communication options choosing, 47
connected smart client applications, 48–50
datasets, 49
distributed ACID transactions, 48
large datasets, 49
loosely and tightly coupled systems, 39–40
Message Queuing, 44–45
.NET Enterprise Services, 40–42
.NET Remoting, 42–44
use coarse-grained, encapsulated messages, 48
versioning Web services and assemblies, 49
Web services, 45–46

global assembly cache, 138, 143, 147
granularity, 96, 161
guidelines

authentication, 91
authorization, 95–96

H
handle creations, 169
handling data. See data handling
hash values, 101
hashing, 86
how to use this guide, 13
Howard, Michael, 102
HTTP basic authentication, 85
HTTP digest authentication, 86

I
I/O bound calls, 159
IAsyncResult object, 123
identifiers, 71
IDisposable interface, 168
Idle events, 162
IIdentity interface, 84, 88

authorization, 92
IIS

authentication mechanisms, 81
HTTP basic authentication, 85

IList interface, 32–33
images, 172–173
imperative checks, 96
imperative demands, 94
implementation issues, 13
InfoPath 2003, 9
input validation, 97–98
installations. See transacted installations

instrumentation
Debug and Trace classes, 181
EIF, 181
ETW, 180
Logging Application Block, 181
performance tools, 180–182
WMI, 181

Integrated Windows authentication, 84
WindowsPrincipal for, 92

intelligent installation and update, 6
Interlocked.CompareExchange method, 116
interop assemblies, 42
introduction, 1–16

chapter outlines, 14–16
choosing between smart clients and

thin clients, 10–11
how to use this guide, 13
mobile smart client applications, 10
Office smart client applications, 8–9
providing client device flexibility, 6–7
providing intelligent installation and update, 6
rich client applications, 1–3, 6, 8
scope of this guide, 13
smart client applications, 3–4
smart client architectural challenges, 11–13
supporting occasionally connected users, 5
thin client applications, 2–3
types of smart clients, 7–10
using local resources, 4
using network resources, 5
what is a smart client?, 1–7
who should read this guide, 14
Windows smart client applications, 8

IO bound processing, 162–163
IOCompletionPorts API, 120
IPrincipal interface, 92
IsInRole method

authorization, 95
authorization guidelines, 96

isolated applications, 138
isolated storage, 101–102
ISVs, 151

J
just-in-time compiler, 164

K
Kerberos, 84
key management, 101
Keypair.snk, 110

192 Smart Client Architecture and Design Guide

L
lazy loading, 164

design tradeoffs, 49
Windows Forms, 173

lazy registration, 41
LeBlanc, David, 102
line-of-business applications. See LOB applications
ListView control, 171
LOB applications

as composite applications, 13
smart clients, 4
thin clients, 3

local resources, 4
using, 4

LocalIntranet permission set, 103
locking

optimistic and pessimistic, 66–67
and synchronization, 115–116

logging
overview, 79
performance tools, 179–180

Logging Application Block, 181
long-term data caching, 20
LongCalculationDelegate, 122
loose coupling, 57–58
loosely and tightly coupled systems, 39–40

M
manual connection management, 63
memory, 182
memory-mapped files. See MMFs
merge replication, 55–56
message digest, 86
message prioritization, 44
Message Queuing. See MSMQ
MessageQueue, 44
messages, 48
metadata

data caching, 20–21
.NET Framework assemblies, 137
stale data handling, 68

Microsoft Management Console. See MMC
Microsoft Message Queuing. See MSMQ
Microsoft .NET Framework. See .NET Framework
Microsoft Office. See Office
Microsoft Office InfoPath 2003. See InfoPath 2003
Microsoft patterns and practices

about, 186–187
current titles, 188–191

Microsoft SQL Server 2000. See SQL Server 2000
Microsoft SQL Server Desktop Engine. See MSDE
Microsoft Systems Management Server. See SMS
Microsoft Visual Studio Tools. See Visual Studio Tools

Microsoft Windows Message Queuing. See MSMQ
MMC, 93
MMFs, 23
mobile smart client applications, 10
Model-View-Controller pattern. See MVC pattern
MQSeries, 45
MSDE

Caching Application Block, 23
for message queue management, 65

MSMQ
communicating over a network, 118
getting connected, 44–45
interoperability of, 45
more information, 45
MQSeries, 45
service-oriented approach, 57
store-and-forward, 64–65
threads for network communication, 118

MultiCastDelegate class, 122
multiple threads, 113–136. See also threads

creating and using threads, 119–126
multithreading in the .NET Framework, 114–117
tasks to handle interaction between the UI thread

and other threads, 126–135
when to use multiple threads, 117–119

MVC pattern
code example, 36–37
to implement data validation, 34–37

N
NameChanged event, 36–37
.NET CLR Memory, 179
.NET Compact Framework

and .NET Framework, 6
overview, 10, 11

.NET Enterprise Services
getting connected, 40–42
when not to choose, 42
when to choose, 47

.NET Framework. See also smart client applications
deploying, 138–140
features to simplify application

deployment, 137–138
installing with an application, 139–140
and .NET Compact Framework, 6
preinstalling, 139
process timers, 116–117
smart client applications, 4
strong naming, 6

.NET Remoting
choosing, 43, 47
getting connected, 42–44
singleton objects, 23

.NETCLR CLR Exceptions, 179

 Index 193

.NETCLR CLR Locks and Threads, 179

.NETCLR CLR Networking, 179

.NETCLR Loading, 179
network access authentication types, 84–88

certificate-based authentication, 87
custom authentication, 88
HTTP basic authentication, 85
HTTP digest authentication, 86
Integrated Windows authentication, 84
WSE-based authentication, 88

networks
communicating over, 118
communication guidelines, 161
minimizing complexity, 60–61
resource using, 5
and threads, 118

NGEN.exe, 165
no-touch deployment, 140–144

with an application update stub, 140, 144–146
fully trusted applications, 146
limitations of, 142–144
updating, 151–152

nonblocking calls, 114
NTLM, 84

O
occasionally connected smart clients, 51–77

asynchronous communication, 59–60
automatic connection management, 63–64
common scenarios, 52–53
complex interactions, 60–61
conflict resolution, 69–70
connections, 62–64
CRUD-like Web services, 71–72
data and business rule conflicts, 65–69
data caching capabilities, 61–62
data partitioning and locking, 66–67
data-centric approach, 55–56
dependencies, 73–76
described, 51
design strategies, 53–54
manual connection management, 63
orchestration middleware, 76
reference data changing, 62
service-oriented approach, 57–58
smart client applications with a service-oriented

approach, 59–72
store-and-forward mechanisms, 64–65
task-based approach, 72–73

occasionally connected users, 5
Office 2003, 9
Office InfoPath 2003. See InfoPath 2003
Office smart client applications, 8–9
Office XML support, 9

offline functionality, 144
optimistic concurrency, 24–25
optimistic locking, 67
orchestration middleware, 76

P
paging

datasets, 49
security considerations, 99
Windows Forms, 173

painting optimization, 174
Parse event, 33–34
partially trusted applications

designing, 106–111
isolated storage, 101–102

partially trusted callers, 108–109
payloads, 46, 49, 57
performance. See application performance
performance counters, 179–180
performance tools

CLR Profiler, 182
instrumentation, 180–182

Debug and Trace classes, 181
EIF, 181
ETW, 180
Logging Application Block, 181
Windows Management

Instrumentation, 181
WMI, 181

logs and alerts, 179–180
.NET CLR Memory, 179
.NETCLR CLR Exceptions, 179
.NETCLR CLR Locks and Threads, 179
.NETCLR CLR Networking, 179
.NETCLR Loading, 179
performance tuning and diagnosis, 179–182
PerformanceCounter class, 180

PerformanceCounter class, 180
permissions

assignments to assemblies, 104–105
authorization, 92–93
Demand/Assert pattern, 108
demands, 107–108
fully trusted applications, 111
gatekeepers, 95
PrincipalPermission object, 94
PrincipalPermissionAttribute, 94
sets, 103
smart client authentication, 81
Windows Installer package, 149

pessimistic concurrency, 24–25
pessimistic locking, 66–67
policy, 103
prerequisites, 14

194 Smart Client Architecture and Design Guide

PrincipalPermission object, 94
PrincipalPermissionAttribute, 94
private keys, 102, 110
process timers, 116–117
PropertyManager object, 29
protocols, 84
proxies, 125
pull model, vs. push model, 62
push model, vs. pull model, 62

Q
QueueUserWorkItem method, 121

R
race conditions, 115–116
RDBMS, 53
reference data, 21

changing, 62
read-only, 18, 160

registrations, lazy, 41–42
Regsvcs.exe, 42
regular expressions, 98
relational database management system. See RDBMS
remote object calls, 118
remote objects, 43
remote procedure calls, 42, 43, 45
remote service calls, 161
resource-based authorization, 92
ResumeLayout method, 171–172
reverse dependencies, 74
RevertAssert, 108
revocation lists, 87
rich client applications, 1–3, 6, 8
role checks, 95
role-based authorization, 93
roundtrips, 160
RPCs, 42, 43, 45
run-time binding, 138
running code from a file share, 140

S
scenarios

authentication, 80–83
deployment scenarios, 106–107
occasionally connected smart clients, 52–53

scope of this guide, 13
Secure Sockets Layer, 85, 98

security considerations, 79–112.
See also authentication; authorization;
code access security; sensitive data

authentication, 79–91
authorization, 92–97
code access security, 102–111
data caching, 20
handling sensitive data, 98–102
input validating, 97–98
no-touch deployment, 142–144

SecurityManager.IsGranted static method, 107
self-describing assemblies, 4, 137
sensitive data

authorized user access, 100
code access security, 102
DPAPI to avoid key management issues, 101
EFS to encrypt files, 100
encryption tools, 98
handling, 98–102
hash values, 101
isolated storage, 101–102
overview, 79
private keys, 102
techniques for protecting, 100–102
which data to store on client, 99–100

servers
dependencies, 74–75
reconciling data on, 70

service-oriented approach, 57–60
service-oriented architecture, 45
serviced components, 41–42
ServicedComponent class, 41
shares, 146, 153
short-term data caching, 19
singleton objects, 23
smart client applications, 3–4, 137–156.

See also applications; .NET Framework
application deployment, 140–149
automatic updating, 152–153
choosing right deployment approach, 140,

149–150
table, 149–150

COM difficulties, 156
common characteristics of, 3
file share updating, 153
.NET Framework deployment, 138–140
no-touch deployment, 140–144

with an application update stub, 140,
144–146

limitations of, 142–144
updating, 151–152

Office smart client applications, 8–9

 Index 195

smart client applications (continued)
recommendations, 48–49
running code from a file share, 140
update choices, 154–155
updates, 151–154
Windows Installer packages, 140
Windows Installer updates, 154
xcopy deployment, 140
xcopy updating, 153

Smart Client Developer Center, 1
Smart Client Offline Application Block, 57

for message queue management, 65
smart clients

architectural challenges, 11–13
as composite applications, 12–13
data types, 18–19
deployment methods, 6
intelligent installation and update, 6
local resource use, 4
mobile smart client applications, 10
network communication options, 118
network resource use, 5
occasionally connected users, 5
Office smart client applications, 8–9
overview, 1–7
providing client device flexibility, 6–7
types of, 7–10
vs. thin clients, 1, 10–12
Windows Installer packages, 147–149
Windows smart client applications, 8

smart documents, 9
smart tags, 9
SmartClientAppUsers, 81
SmartPhone, 56
SMS, 6
Sn.exe tool

code access security, 109–111
command line variations, 110

SOAP
.NET Remoting, 42
Web services, 21, 45–46
WSE 2.0, 88

SQL Server 2000, 23
SQL vulnerabilities, 90, 98
SqlConnection object, 166
SSL, 85, 98
stale data, 67–69
standards, 46
startup time optimization, 159, 164–165
storage mechanisms, 23
store-and-forward mechanisms, 64–65
strong naming, 6
strong-named assemblies, 109–111, 152
stubs, 140, 144–146
summary, 16

SuspendLayout method, 171–172
sync-on-async model, 60
synchronization and locking, 115–116
Synchronized method, 116
synchronous calls, 114
synchronous communication, 59–60
System.Data namespace, 25
System.EnterpriseServices namespace, 41
System.Messaging namespace, 45
Systems Management Server. See SMS
System.Text.RegularExpressions namespace, 98
System.Threading.Timer, 117
System.Timers.Timer, 117
System.Window.Forms.Timer, 116–117

T
tables

Caching Application Block expiration options, 23
choosing communication options, 47
process timer properties, 117
smart client application choices, 149–150
thin clients vs. smart clients, 1, 10–12
update approaches for smart clients, 155

Task class
defining, 129–133
using, 134–135

Task object, 72–73
described, 127–128

Task pattern, 127–128
task-based approach, 72–73
tasks, 127
temporal constraints on data caching, 20
tentative changes, 21
tentative data, 67
thin client applications, 1–3
thin clients

LOB applications, 3
vs. smart clients, 1, 10–12

third-party reconciliation, 70
third-party tools, 179
Thread class, 121–122
Thread object, 121
Thread.IsBackground property, 115
ThreadPool class, 119–121
threads

application startup, 119
asynchronous calls, 124–125
background threads, 114–115
calling Web services asynchronously, 125–126
communicating over a network, 118
completion port threads, 120
delegates, 122–125
described, 113
foreground and background threads, 114–115

196 Smart Client Architecture and Design Guide

threads (continued)
locking and synchronization, 115–116
in .NET Framework, 113–114
for performance, 159
performing local operations, 118
Task class defining, 129–133
Task class using, 134–135
task prioritization, 119
Thread class, 121–122
threading guidelines, 159, 161–163
ThreadPool class, 119–121
timers, 116–117
UI threads, 113–114
UI threads vs. others, 126–127
worker threads, 120

ThreadStatic attribute, 116
tightly and loosely coupled systems

data-centric approach, 56
getting connected, 39–40

timers, 116–117
table of properties, 117

tools. See performance tools
Trace class, 181
transacted installations

no-touch deployment, 144
Windows Installer packages, 140, 147–149

transactions
guidelines, 163
for performance, 159

transient data, 19, 21
transport protocols, 46
TreeView control, 171
two-tier applications, 2
typed DataSets, 25

U
UDDI, 9
UI threads, 113–114

vs. other threads, 126–127
uncommitted changes, 21
unconfirmed data, 67
unique identifiers, 71
untyped DataSets, 25
update approaches for smart clients, 155
Updater Application Block, 145–146

more information, 153
usability studies, 176
user credentials, 89–90
user interface

customizing, 27
updating, 37

user roles, 92

V
versioning

assemblies, 49
.NET Framework, 137
Web services, 49

view objects, 35
Visual Studio development system, 25, 46
Visual Studio .NET Smart Device Projects, 10
Visual Studio Tools, 9

W
WaitCallback delegate, 120
Web services

basic authentication, 85
calling asynchronously, 125–126
CRUD-like, 71–72
described, 45
getting connected, 45–46, 49
SOAP, 21, 45–46
standards, 46
versioning, 49

Web Services Description Language. See WSDL
Windows Forms

data binding
architecture, 28–29
to controls, 30–31
data handling, 27–28
objects in, 29
uses of, 28

handling images, 172–173
lazy loading, 173
paging, 173
performance, 159, 169–174

AddRange method, 171
BeginUpdate method, 169–171
child controls, 169
display speed optimizing, 174
EndUpdate method, 169–171
handle creations, 169
ResumeLayout method, 171–172
SuspendLayout method, 171–172

Windows smart client applications, 8
Windows Installer

packages, 140, 147–149
updates, 154

Windows Management Instrumentation. See WMI
Windows smart client applications, 8

overview, 7–8
Windows Forms, 8

WindowsIdentity, 84
WindowsPrincipal, 92

 Index 197

wininet.dll, 64
WMI, 181
worker threads, 120
Writing Secure Code Second Edition, 102
WSDL

in InfoPath 2003, 9
Web services, 45

WSE-based authentication, 88

X
X.509 certificates, 87
xcopy

deployment, 140
updating, 153

XML
certificate-based authentication, 87
code access security, 103
support in Office, 9
in Web services, 45

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

About Microsoft patterns & practices

Microsoft patterns & practices guides contain specific recommendations illustrating how to design,
build, deploy, and operate architecturally sound solutions to challenging business and technical
scenarios. They offer deep technical guidance based on real-world experience that goes far beyond
white papers to help enterprise IT professionals, information workers, and developers quickly
deliver sound solutions.

IT Professionals, information workers, and developers can choose from four types of patterns &
practices:

● Patterns—Patterns are a consistent way of documenting solutions to commonly occurring
problems. Patterns are available that address specific architecture, design, and implementation
problems. Each pattern also has an associated GotDotNet Community.

● Reference Architectures—Reference Architectures are IT system-level architectures that
address the business requirements, LifeCycle requirements, and technical constraints for
commonly occurring scenarios. Reference Architectures focus on planning the architecture
of IT systems.

● Reference Building Blocks and IT Services—References Building Blocks and IT Services are
re-usable sub-system designs that address common technical challenges across a wide range
of scenarios. Many include tested reference implementations to accelerate development.
Reference Building Blocks and IT Services focus on the design and implementation of sub-
systems.

● Lifecycle Practices—Lifecycle Practices provide guidance for tasks outside the scope of
architecture and design such as deployment and operations in a production environment.

Patterns & practices guides are reviewed and approved by Microsoft engineering teams, consultants,
Product Support Services, and by partners and customers. Patterns & practices guides are:

● Proven—They are based on field experience.

● Authoritative—They offer the best advice available.

● Accurate—They are technically validated and tested.

● Actionable—They provide the steps to success.

● Relevant—They address real-world problems based on customer scenarios.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Patterns & practices guides are designed to help IT professionals, information workers, and
developers:

Reduce project cost
● Exploit the Microsoft engineering efforts to save time and money on your projects.

● Follow the Microsoft recommendations to lower your project risk and achieve predictable
outcomes.

Increase confidence in solutions
● Build your solutions on proven Microsoft recommendations so you can have total confidence in

your results.

● Rely on thoroughly tested and supported guidance, but production quality recommendations and
code, not just samples.

Deliver strategic IT advantage
● Solve your problems today and take advantage of future Microsoft technologies with practical

advice.

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

patterns & practices: Current Titles
October 2003

Title Link to Online Version Book

Patterns

Enterprise Solution Patterns http://msdn.microsoft.com/practices/type/Patterns
using Microsoft .NET /Enterprise/default.asp

Microsoft Data Patterns http://msdn.microsoft.com/practices/type/Patterns
/Data/default.asp

Reference Architectures

Application Architecture for http://msdn.microsoft.com/library/default.asp?url=
.NET: Designing Applications /library/en-us/dnbda/html/distapp.asp
and Services

Enterprise Notification http://msdn.microsoft.com/library/default.asp?url=
Reference Architecture for /library/en-us/dnentdevgen/html/enraelp.asp
Exchange 2000 Server

Improving Web Application http://msdn.microsoft.com/library/default.asp?url=
Security: Threats and /library/en-us/dnnetsec/html/ThreatCounter.asp
Countermeasures

Microsoft Accelerator http://www.microsoft.com/technet/treeview
for Six Sigma /default.asp?url=/technet/itsolutions/mso/sixsigma

/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Guide: /default.asp?url=/technet/prodtechnol/ad
Volume 1: Planning /windows2000/deploy/adguide/default.asp

Microsoft Active Directory http://www.microsoft.com/technet/treeview
Branch Office Series /default.asp?url=/technet/prodtechnol/ad
Volume 2: Deployment and /windows2000/deploy/adguide/default.asp
Operations

Microsoft Content Integration http://msdn.microsoft.com/library/default.asp?url=
Pack for Content Management /library/en-us/dncip/html/cip.asp
Server 2001 and SharePoint
Portal Server 2001

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 1: Planning

Microsoft Exchange 2000 Online Version not available
Server Hosting Series
Volume 2: Deployment

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 1: Planning /default.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview
Server Upgrade Series /default.asp?url=/technet/itsolutions/guide
Volume 2: Deployment /default.asp

Microsoft Solution http://www.microsoft.com/technet/treeview
for Intranets /default.asp?url=/technet/itsolutions/mso

/msi/Default.asp

Microsoft Solution for http://www.microsoft.com/downloads
Securing Wireless LANs /details.aspx?FamilyId=CDB639B3-010B-47E7-B23

4-A27CDA291DAD&displaylang=en

Microsoft Systems http://www.microsoft.com/technet/treeview
Architecture— /default.asp?url=/technet/itsolutions/edc
Enterprise Data Center /Default.asp

Microsoft Systems http://www.microsoft.com/technet/treeview/
Architecture— default.asp?url=/technet/itsolutions/idc/default.asp
Internet Data Center

The Enterprise Project http://www.microsoft.com/technet/treeview
Management Solution /default.asp?url=/technet/itsolutions/mso/epm

/default.asp

UNIX Application http://msdn.microsoft.com/library/default.asp?url=
Migration Guide /library/en-us/dnucmg/html/ucmglp.asp

Reference Building Blocks and IT Services

.NET Data Access http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/daag.asp

Application Updater http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/updater.asp

Asynchronous Invocation http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnpag/html/paiblock.asp

Authentication in ASP.NET: http://msdn.microsoft.com/library/default.asp?url=
.NET Security Guidance /library/en-us/dnbda/html/authaspdotnet.asp

Building Interoperable Web http://msdn.microsoft.com/library/default.asp?url=
Services: WS-I Basic /library/en-us/dnsvcinter/html/wsi-bp_msdn_
Profile 1.0 landingpage.asp

Building Secure ASP.NET http://msdn.microsoft.com/library/default.asp?url=
Applications: Authentication, /library/en-us/dnnetsec/html/secnetlpMSDN.asp
Authorization, and Secure
Communication

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

Caching Application Block http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnpag/html/Cachingblock.asp

Caching Architecture Guide for http://msdn.microsoft.com/library/default.asp?url=
.Net Framework Applications /library/en-us/dnbda/html/CachingArch.asp?frame=

true

Configuration Management http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/cmab.asp

Data Access Application Block http://msdn.microsoft.com/library/default.asp?url=
for .NET /library/en-us/dnbda/html/daab-rm.asp

Designing Application-Managed http://msdn.microsoft.com/library/?url=/library
Authorization /en-us/dnbda/html/damaz.asp

Designing Data Tier Components http://msdn.microsoft.com/library/default.asp?url=
and Passing Data Through Tiers /library/en-us/dnbda/html/BOAGag.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Application Block for .NET /library/en-us/dnbda/html/emab-rm.asp

Exception Management http://msdn.microsoft.com/library/default.asp?url=
Architecture Guide /library/en-us/dnbda/html/exceptdotnet.asp

Microsoft .NET/COM Migration http://msdn.microsoft.com/library/default.asp?url=
and Interoperability /library/en-us/dnbda/html/cominterop.asp

Microsoft Windows Server http://www.microsoft.com/downloads/
2003 Security Guide details.aspx?FamilyId=8A2643C1-0685-4D89-B655-

521EA6C7B4DB&displaylang=en

Monitoring in .NET Distributed http://msdn.microsoft.com/library/default.asp?url=
Application Design /library/en-us/dnbda/html/monitordotnet.asp

New Application Installation http://www.microsoft.com/business/reducecosts
using Systems Management /efficiency/manageability/application.mspx
Server

Patch Management using http://www.microsoft.com/technet/treeview/
Microsoft Systems Management default.asp?url=/technet/itsolutions/msm/swdist/
Server - Operations Guide pmsms/pmsmsog.asp

Patch Management Using http://www.microsoft.com/technet/treeview/
Microsoft Software Update default.asp?url=/technet/itsolutions/msm/swdist/
Services - Operations Guide pmsus/pmsusog.asp

Service Aggregation Application http://msdn.microsoft.com/library/default.asp?url=
Block /library/en-us/dnpag/html/serviceagg.asp

Service Monitoring and Control http://www.microsoft.com/business/reducecosts
using Microsoft Operations /efficiency/manageability/monitoring.mspx
Manager

To learn more about patterns & practices visit: http://msdn.microsoft.com/practices
To purchase patterns & practices guides visit: http://shop.microsoft.com/practices

Title Link to Online Version Book

User Interface Process http://msdn.microsoft.com/library/default.asp?url=
Application Block /library/en-us/dnbda/html/uip.asp

Web Service Façade for http://msdn.microsoft.com/library/default.asp?url=
Legacy Applications /library/en-us/dnpag/html/wsfacadelegacyapp.asp

Lifecycle Practices

Backup and Restore for http://www.microsoft.com/technet/treeview/default.asp
Internet Data Center ?url=/technet/ittasks/maintain/backuprest/Default.asp

Deploying .NET Applications: http://msdn.microsoft.com/library/default.asp?url=
Lifecycle Guide /library/en-us/dnbda/html/DALGRoadmap.asp

Microsoft Exchange 2000 http://www.microsoft.com/technet/treeview/default.
Server Operations Guide asp?url=/technet/prodtechnol/exchange/exchange

2000/maintain/operate/opsguide/default.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 1: Planning /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
High Availability Series: /default.asp?url=/technet/prodtechnol/sql/deploy
Volume 2: Deployment /confeat/sqlha/SQLHALP.asp

Microsoft SQL Server 2000 http://www.microsoft.com/technet/treeview
Operations Guide /default.asp?url=/technet/prodtechnol/sql/maintain

/operate/opsguide/default.asp

Operating .NET-Based http://www.microsoft.com/technet/treeview
Applications /default.asp?url=/technet/itsolutions/net/maintain

/opnetapp/default.asp

Production Debugging for http://msdn.microsoft.com/library/default.asp?url=
.NET-Connected Applications /library/en-us/dnbda/html/DBGrm.asp

Security Operations for http://www.microsoft.com/technet/treeview
Microsoft Windows 2000 Server /default.asp?url=/technet/security/prodtech

/win2000/secwin2k/default.asp

Security Operations Guide for http://www.microsoft.com/technet/treeview
Exchange 2000 Server /default.asp?url=/technet/security/prodtech

/mailexch/opsguide/default.asp

Team Development with Visual http://msdn.microsoft.com/library/default.asp?url=
Studio .NET and Visual /library/en-us/dnbda/html/tdlg_rm.asp
SourceSafe

This title is available as a Book

	Smart Client Architecture and Design Guide
	Title Page
	Contents
	Foreword
	Chapter 1: Introduction
	What Is a Smart Client?
	Rich Client Applications
	Thin Client Applications
	Smart Client Applications
	Using Local Resources
	Using Network Resources
	Supporting Occasionally Connected Users
	Providing Intelligent Installation and Update
	Providing Client Device Flexibility

	Types of Smart Clients
	Windows Smart Client Applications
	Office Smart Client Applications
	Mobile Smart Client Applications

	Choosing Between Smart Clients and Thin Clients
	Smart Client Architectural Challenges
	Scope of This Guide
	How to Use This Guide
	Who Should Read This Guide
	Prerequisites

	Chapter Outlines
	Chapter 1: Introduction
	Chapter 2: Handling Data
	Chapter 3: Getting Connected
	Chapter 4: Occasionally Connected Smart Clients
	Chapter 5: Security Considerations
	Chapter 6: Using Multiple Threads
	Chapter 7: Deploying and Updating Smart Client Applications
	Chapter 8: Smart Client Application Performance

	Summary
	More Information

	Chapter 2: Handling Data
	Types of Data
	Read-Only Reference Data
	Transient Data

	Caching Data
	The Caching Application Block

	Data Concurrency
	Using ADO.NET DataSets to Manage Data
	Merging Data with Datasets
	Increasing the Performance of Datasets

	Windows Forms Data Binding
	Windows Forms Data Binding Architecture
	Binding Data to Windows Forms Controls
	Binding Controls to DataSets
	Navigating Through a Collection of Data
	Custom Formatting and Data Type Conversion
	Using the Model-View-Controller Pattern to Implement Data Validation
	Updating the User Interface When the Underlying Data Changes

	Summary

	Chapter 3: Getting Connected
	Loosely Coupled and Tightly Coupled Systems
	Communication Options
	.NET Enterprise Services
	.NET Remoting
	Message Queuing
	Web Services

	Choosing a Communication Option
	Designing Connected Smart Client Applications
	Use Coarse-Grained, Encapsulated Messages
	Avoid Distributed ACID Transactions
	Avoid Sending Datasets Across the Network
	Break Up Large Datasets
	Version Your Web Services and Assemblies

	Summary

	Chapter 4: Occasionally Connected Smart Clients
	Common Occasionally Connected Scenarios
	Occasionally Connected Design Strategies
	The Data-Centric Approach
	The Service-Oriented Approach

	Designing Occasionally Connected Smart Client Applications Using a Service-Oriented Approach
	Favoring Asynchronous Communication
	Minimizing Complex Network Interactions
	Adding Data Caching Capabilities
	Handling Changes to Reference Data

	Managing Connections
	Manual Connection Management
	Automatic Connection Management

	Designing Store-and-Forward Mechanisms
	Managing Data and Business Rule Conflicts
	Partitioning and Locking Data
	Tracking Unconfirmed or Tentative Data
	Handling Stale Data
	Reconciling Conflicts

	Interacting with CRUD-Like Web Services
	Create
	Read
	Update
	Delete

	Using a Task-Based Approach
	Handling Dependencies
	Handling Dependencies at the Server
	Handling Dependencies at the Client
	Using Orchestration Middleware

	Summary

	Chapter 5: Security Considerations
	Authentication
	Smart Client Authentication Scenarios
	Installation
	Authenticated Application Access
	Authenticated Local Data Access
	Authenticated Network Access

	Choosing the Right Authentication Model
	Network Access Authentication Types
	Integrated Windows Authentication
	HTTP Basic Authentication
	HTTP Digest Authentication
	Certificate-based Authentication
	WSE-based Authentication
	Custom Authentication

	Gathering and Validating User Credentials
	Gathering Currently Logged-On User Credentials
	Gathering User Credentials Using a Logon Dialog Box

	Authentication Guidelines

	Authorization
	Types of Authorization
	Resource-based Authorization
	Role-based Authorization

	Adding Authorization Capabilities to Your Application
	Performing Declarative Demands Using the PrincipalPermissionAttribute
	Performing Imperative Demands Using the PrincipalPermission Object
	Performing Role Checks Using the IsInRole Method
	Performing Role Checks for Custom Authentication

	Authorization Guidelines
	Authorizing Functionality When the Client Is Offline
	The Authorization and Profile Application Block

	Input Validation
	Handling Sensitive Data
	Determining Which Data to Store on the Client
	Techniques for Protecting Sensitive Data
	Ensure that Only Authorized Users can Access Data
	Consider Using EFS to Encrypt Files
	Consider Using DPAPI to Avoid Key Management Issues
	Consider Storing Hash Values Instead of Plain Text
	Consider Isolated Storage for Partially Trusted Applications
	Protect Private Keys

	Code Access Security
	Code Access Security Permission Resolution
	Designing for Code Access Security
	Designing Partially Trusted Applications
	Designing Fully Trusted Applications

	Summary

	Chapter 6: Using Multiple Threads
	Multithreading in the .NET Framework
	Choosing Between Synchronous and Asynchronous Calls
	Choosing Between Foreground and Background Threads
	Handling Locking and Synchronization
	Using Timers

	When to Use Multiple Threads
	Communicating Over a Network
	Performing Local Operations
	Distinguishing Tasks of Varying Priority
	Application Startup

	Creating and Using Threads
	Using the ThreadPool Class
	Using the Thread Class
	Using Delegates
	Calling Web Services Asynchronously

	Using Tasks to Handle Interaction Between the UI Thread and Other Threads
	Defining a Task Class
	Using the Task Class

	Summary

	Chapter 7: Deploying and Updating Smart Client Applications
	Deploying the .NET Framework
	Preinstalling the .NET Framework
	Installing the .NET Framework with an Application

	Deploying Smart Client Applications
	No-Touch Deployment
	Limitations of No-Touch Deployment

	No-Touch Deployment with an Application Update Stub
	Running Code from a File Share
	Xcopy Deployment
	Windows Installer Packages

	Choosing the Right Deployment Approach
	Deploying Smart Client Updates
	No-Touch Deployment Updates
	Automatic Updates
	Updates from a File Share
	Xcopy Updates
	Windows Installer Updates

	Choosing the Right Update Approach
	Summary

	Chapter 8: Smart Client Application Performance
	Designing for Performance
	Data Caching Guidelines
	Network Communications Guidelines
	Threading Guidelines
	Transaction Guidelines
	Optimizing Application Startup Time
	Managing Available Resources
	Optimizing Windows Forms Performance
	Using BeginUpdate and EndUpdate
	Using SuspendLayout and ResumeLayout
	Handling Images
	Use Paging and Lazy Loading
	Optimizing Display Speed

	Performance Tuning and Diagnosis
	Setting Performance Goals
	Considering the User’s Perspective
	Considering the Application Operating Environment

	Performance Tuning Process
	Performance Tools
	Using Performance Logs and Alerts
	Instrumentation
	CLR Profiler

	Summary
	References

	Collaborators and Reviewers
	Index
	Additional Resources

